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The present study examines the relationship between social influence
and recommendation decisions among adolescents in the new media
environment. Participants completed the App Recommendation Task—a
task that captures neural processes associated with making
recommendations to others, with and without information about peer
recommendations of the type commonly available online. The results
demonstrate that increased activity in the striatum and orbitofrontal
cortex in response to peer recommendations is significantly correlated
with participants changing their recommendations to be consistent with
this feedback within subjects. Furthermore, individual differences in
activation of the temporoparietal junction during feedback that peer
recommendations varied from those of the participant correlated with
individual differences in susceptibility to influence on recommendation
decisions between subjects. These brain regions have previously been
implicated in social influence and the concept of being a “successful idea
salesperson,” respectively. Together, they highlight a potential combination
of internal preference shifts and consideration of the mental states of
others in recommendation environments that include peer opinions.
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Neural Correlates of Susceptibility to Group
Opinions in Online Word-of-Mouth
Recommendations

Sharing ideas and information is an essential aspect of
communication, and it has a substantial impact on human
preferences and behaviors (Bone 1995; Tzourio-Mazoyer et
al. 2002). People frequently make recommendations about
using or avoiding specific products and services, willingly
sharing their experiences and opinions with others. In turn,
word-of-mouth recommendations can significantly shape
consumer decisions (Anderson and Magruder 2012; Berger
2014; Chevalier and Mayzlin 2006; Chintagunta, Gopinath,
and Venkataraman 2010; Duan, Gu, and Whinston 2008; Ye
et al. 2011). This phenomenon is particularly highlighted in
the new media environment, in which people can instantly
share with a wide range of friends, strangers, and imagined
others online. In the online space, consumers make recom-
mendations for everything from which services are most
reliable to where to eat or what car to buy.



From a marketing perspective, consumer recommenda-
tions can influence product and brand popularity and are
commonly found within the competitive marketplace. In
fact, successful product launches often rely on the pairing of
the right product with recommendations from the right group
of people (Aral and Walker 2011, 2012; Hinz et al. 2011;
Van der Lans et al. 2010; Watts and Dodds 2007). Indeed, it
is well documented that social influence (e.g., social proof;
Cialdini and Goldstein 2004)—or, more generally, learning
about the preferences and behaviors of others— can power-
fully affect consumers’ personal decisions (Senecal and
Nantel 2004). Less is known, however, about the processes
through which recommenders make recommendation deci-
sions, especially in relation to how social information influ-
ences consumers’ decisions about the recommendations they
make. The ubiquity of opportunities to generate recommen-
dations, combined with the power of the resulting decisions
to influence other potential recommenders, highlights the
importance of understanding the underlying processes
through which recommendation decisions are made and
affected by the preferences and opinions of others.
Neuroimaging is one valuable tool for understanding

such mechanisms. Neuroimaging methods such as func-
tional magnetic resonance imaging (fMRI) allow for simul-
taneous examination of multiple neurocognitive processes
in real time, as decisions unfold. In particular, behaviors
that appear similar on the surface may be produced by dif-
ferent underlying processes (Lieberman 2010); for example,
neuroimaging may be well suited to discriminate between
public compliance with the opinions of others while still
maintaining an initial set of beliefs privately and actual
shifts in privately held opinions (Zaki, Schirmer, and
Mitchell 2011). Following this logic, a growing body of lit-
erature has characterized the neural systems associated with
conformity and social influence on individual opinions and
behaviors (Berns et al. 2005, 2010; Campbell-Meiklejohn et
al. 2010; Chein et al. 2011; Falk et al. 2010; Klucharev et al.
2009; Mason, Dyer, and Norton 2009; McClure et al. 2004;
Stallen, Smidts, and Sanfey 2013; Zaki, Schirmer, and
Mitchell 2011; for reviews, see Falk, Way, and Jasinska
2012; Izuma and Adolphs 2013). An overarching theme
from this work is that social influence seems not only to
change surface-level decisions and reported preferences but
also to genuinely alter the value of stimuli ascribed in the
brain (Mason, Dyer, and Norton 2009; Zaki, Schirmer, and
Mitchell 2011). However, no prior studies have investigated
the neural processes involved in making and updating other-
directed recommendations in response to peer recommenda-
tions. This is a critical gap in the literature given the impor-
tance of recommendation decisions for the aforementioned
outcomes; other-directed recommendations may differ in
key ways from self-oriented preferences and may be
changed through mechanisms not apparent in previous stud-
ies of social influence.
In considering the neural processes that might be

involved in decisions to update (or not update) a recommen-
dation in the face of peer opinions that differ from one’s
own, we draw on two distinct bodies of research that have
investigated two fundamental parts of this novel question.
First, we review the neural processes that distinguish people
who are more and less successful in making recommenda-

tions to others. Second, we review the neural processes that
are associated with updating personal preferences in
response to social influence. We hypothesize that decisions
to update other-directed recommendations in response to
peer opinions may unite these brain systems to arrive at
final recommendation decisions.

NEURAL CORRELATES OF SUCCESSFUL
RECOMMENDATIONS

A small number of neuroimaging studies have character-
ized neural processes involved in how people influence oth-
ers through recommendation and related behaviors
(Dietvorst et al. 2009; Falk et al. 2013; Falk, O’Donnell,
and Lieberman 2012). These preliminary studies converge
on the importance of activity in the communicator’s tem-
poroparietal junction (TPJ) for the successful transmission
of ideas and recommendations. The TPJ is key to under-
standing the mental states of others (Saxe and Kanwisher
2003; Saxe and Powell 2006), termed “mentalizing.” Previ-
ous work has speculated that successful recommenders may
more actively consider what others are likely to think of
ideas before recommending them (Falk et al. 2013).
More specifically, research has examined individual dif-

ferences in people’s effectiveness in promoting their ideas
to others (termed the “idea salesperson effect”). Increased
activation of the TPJ has been associated with being a “suc-
cessful idea salesperson” (Falk et al. 2013) and was the only
brain region robustly observed to track this ability. Exami-
nation of the coordinates observed by Falk et al. (2013)
using the Neurosynth database suggests that the probability
of mentalizing given the activations observed is high
(Yarkoni et al. 2011). It is possible that those who are better
at persuading others or conveying their ideas to others may
already be thinking about how to make shared information
useful to others during initial idea encoding (Falk et al.
2013). These people may also be more receptive to social
cues more broadly and may make more use of social infor-
mation as they formulate their recommendations, a focus of
the current investigation.
In addition, research has examined related neural pro-

cesses associated with actual salespeople’s increased ability
to get inside the minds of their consumers—a salesperson
theory-of-mind index (Dietvorst et al. 2009). These
researchers also found that increased activity in the TPJ and
medial prefrontal cortex (mPFC) was associated with
greater tendency to mentalize about consumers and, ulti-
mately, better sales performance (Dietvorst et al. 2009).
Taken together, these results suggest that activity in TPJ
(and mPFC) may be important for dynamically updating in
the face of social signals that could play an especially
important role in the context of making recommendations.
NEURAL CORRELATES OF SOCIAL INFLUENCE ON

INDIVIDUAL PREFERENCES AND DECISIONS
Building on decades of literature demonstrating the

power of social proof to alter individual preferences and
decisions, a separate body of neuroimaging literature has
documented the neural shifts that occur in evaluating stim-
uli that are judged more or less favorably by others. In
attempting to explain why the brain would alter its represen-
tation of objectively identical inputs in response to different
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group opinions, much of this work has focused on the
broader evolutionary benefits of fitting in with a social
group (for a review, see Falk, Way, and Jasinska 2012).
Given the benefits of group membership, susceptibility to

social influence is thought to be reinforced, in part, by activity
in the brain’s valuation system, including parts of the ventral
striatum (VS) and oribitofrontal cortex (OFC)/ventromedial
prefrontal cortex (Campbell-Meiklejohn et al. 2010; Chein et
al. 2011). A substantial body of literature has established that
social feedback is encoded in similar parts of the valuation
system as primary rewards such as food and sex (Bartra,
McGuire, and Kable 2013; Lieberman and Eisenberger
2009; McClure, York, and Montague 2004). This respon-
siveness to social signals in the valuation system may help
maintain group harmony and encourage cohesion. In line
with this argument, fMRI studies of social influence have
used neural signals within the brain’s valuation system to
demonstrate that group opinions actually change the under-
lying responses in these regions to social stimuli (Klucharev
et al. 2009; Mason, Dyer, and Norton 2009; Zaki, Schirmer,
and Mitchell 2011). These studies suggest that valuation
may be one key driver of susceptibility to social influence,
with people updating their internal preferences according to
social norms.
Likewise, humans have developed alarm systems that

detect conflict and respond to social threats (Cacioppo et al.
2002; Eisenberger 2012; Hawkley et al. 2003, 2010; Peters
et al. 2011). For example, it is believed that the brain’s
response to social exclusion is built on the evolutionarily
older neural system that responds to physical pain in service
of maintaining group cohesion (Eisenberger 2012; Eisen-
berger, Lieberman, and Williams 2003; Panksepp 1978).
Neural regions include the dorsal anterior cingulate cortex
(dACC) and anterior insula in adults (Eisenberger 2012;
Eisenberger, Lieberman, and Williams 2003) and the sub-
genual cingulate cortex (subACC) in adolescents (Falk et al.
2014; Masten et al. 2009). Beyond studies of social pain, the
dACC has also been implicated in basic cognitive processes
such as conflict monitoring and error detection (Carter et al.
1998; Critchley et al. 2005; Kerns et al. 2004), which would
also be highly relevant to maintaining alignment with group
opinions.
In the domain of social influence, neural sensitivity

within these brain regions has been implicated in confor-
mity (Berns et al. 2005; Gunther Moor et al. 2010; Peake et
al. 2013). In one study, individual differences in sensitivity
to popularity ratings of music within the anterior insula and
dACC were associated with tendency to conform (Berns et
al. 2010). In another recent study, individual differences in
neural activity within the subACC and anterior insula, as
well as in brain regions selected for their role in mentalizing
(i.e., TPJ, posterior cingulate, and dorsomedial prefrontal
cortex [dmPFC]) during exclusion, predicted later suscepti-
bility to social influence in teens (Falk et al. 2014). In this
same investigation, self-reports of sensitivity to social cues
(distress during exclusion) did not predict susceptibility to
social influence, highlighting the value of fMRI for helping
unpack mechanisms that may not be apparent using tradi-
tional self-report measures alone. Although one of several
possible interpretations, these data are consistent with the
idea that teens whose brains are more sensitive to a range of

social cues may attend more strongly to the potential for
social consequences of their actions and take steps preemp-
tively to gain attention or fit in by conforming. More
broadly, to the extent that people are more sensitive to social
conflict and experience greater physiological reactivity to
being out of line with a group, they might be more inclined
to behave in ways that preemptively avoid exclusion and
promote bonding by conforming (Falk, Way, and Jasinska
2012).

THE CURRENT STUDY
In the current study, we combine the two previously

reviewed literature streams on the neural mechanisms
underlying recommendations (Dietvorst et al. 2009; Falk et
al. 2013; Falk, O’Donnell, and Lieberman 2012) and on
social influence (Berns et al. 2010; Mason, Dyer, and Nor-
ton 2009; Zaki, Schirmer, and Mitchell 2011) to test predic-
tions about mechanisms that lead participants to update
their recommendations in response to feedback about peers’
recommendations. We unite these previously disjointed litera-
ture streams to investigate the intersection of recommendation
decisions and social influence in an adolescent population.
We examine neural and behavioral responses as partici-

pants make recommendation decisions and then update
those decisions in response to the recommendations of other
peers. We hypothesize that both neural systems previously
implicated in successfully recommending ideas to others
and neural systems previously implicated in susceptibility
to social influence will come together when participants
update their recommendations to others on the basis of peer
recommendations.
Unlike previous research on social influence that has

examined how social feedback influences people’s own
opinions, the current investigation examines how social
feedback influences the recommendations people make for
others. Thus, the current study examines social influence
that goes beyond the end user and reflects how information
passed on to other potential consumers may be biased by the
current average group opinion. The current findings associ-
ated with other-directed recommendations can then be quali-
tatively compared with previous studies that have examined
self-directed recommendations, though the primary purpose
of our study is to first describe the neural processes impli-
cated in other-directed recommendations. In addition to
investigating the neural processes associated with socially
prompted shifts in recommendation behavior on average,
the present study also aims to understand individual differ-
ences that lead some young consumers to readily and
dynamically update their recommendations in the face of
peer group feedback, but not others.
In parallel with such basic science objectives, we also

intend to create an experimental manipulation that mimics
the new media recommendation environment. Recommen-
dations are made frequently online with limited informa-
tion, with large consequences for sales and marketing. Rec-
ommendation platforms often offer anonymity and require
limited effort to engage. To maximize the external validity
of this research, the current study addresses the intersection
of recommendation decisions and social influence in ado-
lescents in a task that mimics several of these qualities. The
task involves recording recommendations of real mobile



game apps on the basis of information provided by app
developers at the iTunes store. This task enables us to
explore real-world relevant marketing stimuli in the context
of a well-controlled lab setting, providing high levels of
external and internal validity.
We focused on ratings of mobile game applications,

which are a fast-growing component of the new media mar-
ket; forecasts estimate that an estimated 268 billion apps
will be downloaded per year by 2017 (Shen and Blau 2013).
Furthermore, the mobile app industry is projected to pro-
duce $76 billion in revenue by 2017 (Shen and Blau 2013).
The ubiquity of mobile technology and constant contact
with mobile devices make it especially important to under-
stand how people make choices about what to consume and
recommend to others in this arena.
Finally, we focus on adolescents given that preferences

and ways of processing social information are learned dur-
ing this developmental period (Cummings et al. 1997;
Schindler and Holbrook 2003; Valkenburg and Cantor
2001). In addition, adolescents have a high level of engage-
ment with the new media environment, such as the use of
mobile apps (Bellman et al. 2011). There is increasing
recognition that substantially more research is needed to
understand how social, cognitive, and affective processes
interact in the adolescent brain during social influence
(Pfeifer and Allen 2012), and no prior research has investi-
gated the neural processes at play as adolescents make rec-
ommendation decisions or how social influence might affect
the neural processes underlying recommendation decisions.

METHODS
Pilot Study for the App Recommendation Task
Before running the main fMRI study, behavioral pilot data

were gathered on the App Recommendation Task (described
next) to test whether group recommendation information
could affect participants’ final recommendations. Initial pilot
testing was carried out using 106 undergraduate students
enrolled in an introductory communications class at the Uni-
versity of Michigan. Participants completed a computer-
based version of the App Recommendation Task in exchange
for course credit. We analyzed the pilot study and behavioral
results using repeated-measures analyses of variance to detect
overall group differences and planned contrasts to determine
whether the specific group recommendation condition altered
the mean likelihood of changing one’s final recommendation.
fMRI Study Participants
Seventy eligible male adolescents took part in the current

study and were recruited from the Michigan Driver History
Record through the University of Michigan Transportation
Research Institute as part of a larger series of studies exam-
ining adolescent driving behavior. One participant was
excluded because he noted that he had used the incorrect
finger when making final ratings for a portion of the task;
two participants were excluded because they did not com-
plete enough of the initial/final recommendations to model
behavior; one participant was excluded for incomplete data
resulting from scanner error; and one participant was
excluded because of a lack of variability in recommenda-
tions, which prevented behavior change models from run-
ning. Removing these participants resulted in a final sample

size of 65. All participants were aged between 16 and 17
years (M = 16.9 years, SD = .30), were right-handed, did
not suffer from claustrophobia, were not currently taking
any psychological medications, had normal (or corrected-
to-normal) vision, did not have metal in their body that was
contraindicated for fMRI, and did not typically experience
motion sickness. Legal guardians provided written informed
consent following a telephone discussion with a trained
research assistant, and teens provided written assent.
App Recommendation Task
We developed the App Recommendation Task for the

fMRI environment to examine the intersection between rec-
ommendation decisions and social influence on such deci-
sions. The task captures neural processes associated with
sharing online recommendations for a mobile game website
and manipulates social feedback regarding the recommen-
dations of peers. The task stimuli consist of real puzzle-
based game app titles, images, and their associated descrip-
tions acquired from the iTunes App Store. We used actual
apps from the App Store to maximize external validity and
engagement for the target participants, maintain a sense of
realism, and present a product that adolescents and young
adults are likely to buy and rate online in real life. As part of
the task, participants were exposed to information that is
available at the App Store: game titles, logos, and brief
descriptions of the games (Figure 1). We used games from one
category (puzzle-based games) to reduce strong preferences
for one particular game genre over another (e.g., shooter game
vs. sports game), and all game descriptions were limited to a
consistent two-sentence structure (e.g., Zombie Grand-
mother: “Fight your way through the army of the Undead
blasting them with fireballs, cutting ropes, and breaking
chains. Defeat your main target, the Zombie Grandmother!”).
Participants completed two rounds of the App Recom-

mendation Task. First, an initial set of recommendation
intentions were recorded during a prescan session in which
participants initially learned about the games. During the
initial rating session, participants were asked to give their
preliminary opinions on 80 previously unknown mobile
game apps in response to a prompt asking, “How likely
would you be to recommend the game to a friend?” Partici-
pants rated the games on a five-point Likert scale (1 =
“wouldn’t recommend,” and 5 = “would recommend”). The
80 games were randomly ordered within participants.
During the fMRI session, participants completed a second

round of the App Recommendation Task, which occurred
approximately 40 minutes after the initial recommendations
were given. Participants were told that they would be rerat-
ing the same 80 mobile game apps to be recorded for a
review website; however, mimicking the experience of sev-
eral online rating platforms, this time participants would be
shown the title, logo, and a reminder of how they initially
rated the game. It was explained that they would then be
shown information about whether their peers in the study
were more likely, less likely, or equally likely to recommend
the games to others; however, they were told that peer rec-
ommendation information was not available for some games
because we had not yet collected recommendation informa-
tion. Peer group recommendations were pseudorandomly
computer generated to maintain 20 trials for each feedback
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type. Finally, participants were instructed that they would
be given an opportunity to update their initial recommenda-
tions if they wanted and told to lock in a final response in
the scanner. In other words, during the fMRI portion of the
task, each game rating block consisted of three parts. 
Consistent with these instructions, in the scanner, partici-

pants first saw a reminder of the game using the title and

logo along with a reminder of how they initially rated the
game (two seconds). Next, participants were exposed to
manipulated peer group recommendations relative to their
own (higher, lower, or same) or no peer group feedback (not
rated) (three seconds). Finally, participants were asked to
lock in a final recommendation for each game for the web-
site (three seconds; Figure 2). Following the scanning ses-

Figure 1
ROUND 1: PRESCAN BASELINE RATINGS

     
  

    
   

Initial Exposure to Game App (Randomly Ordered) Baseline Rating of Game App Given

Notes: Participants completed the initial recommendation portion of the App Recommendation Task before the scanning session. Recommendations were
given on a five-point Likert scale (1 = “wouldn’t recommend,” and 5 = “would recommend”). Recommendations were based on exposure to game titles,
logos, and brief descriptions of the games.

Figure 2
ROUND 2: fMRI GROUP RATINGS

Reminder of 
baseline rating 

(2 seconds) Group feedback  
Given 

(3 seconds) 

Final rating given 

Final rating  
prompt  

  

Notes: Participants completed the group feedback portion of the App Recommendation Task during the fMRI session. Recommendations were given on a
five-point Likert scale (1 = “wouldn’t recommend,” and 5 = “would recommend”). Ratings were based on exposure to peer group feedback (higher, lower,
same, or not rated) in conjunction with a reminder of the participant’s initial recommendation.

Reminder of Baseline
Rating (2 Seconds)

Group Feedback Given
(3 Seconds)

Final Rating Prompt

Final Rating Given

(3 Seconds)



sion, participants completed a debriefing interview in which
they were asked what they believed the goal of the task was
(“What type of strategy did you use during this task?”
“What did you think of your group members’ ratings?”
“What do you think the purpose of the experiment was
today?” and “What was the experiment trying to study?”).
No participants reported any explicit connection between
social influence and the App Recommendation Task. As we
expected, given that the task was completed as part of a
larger study on teen driving, participants commonly indi-
cated that they thought the study was attempting to examine
processes related to driving behaviors, such as decision-
making skills, emotions, judgments made in various situa-
tions, and individual differences in focus and memorization.
In addition, participants completed the App Recommenda-
tion Task as part of a larger fMRI session that examined
three additional tasks that were not the focus of the current
investigation, which also served to reduce demand artifacts. 
Finally, we took several measures to increase the plausi-

bility of the task: participants were told that we were con-
ducting a marketing study to understand how relatively
unknown apps become popular, given that when they are
introduced on sites such as iTunes, there is generally very
little information with which to make purchasing decisions.
In addition, participants were specifically told that we were
interested in how they made recommendations on the basis
of exposure to limited information and that we wanted them
to give their best recommendation for their peers as they
would on the type of mobile game site from which the app
descriptions were originally pulled.
fMRI Data Acquisition and Analysis
Imaging data were acquired using a 3 Tesla GE Signa

MRI scanner. Functional images were recorded using a
reverse spiral sequence (TR = 2,000 ms, TE = 30 ms, flip
angle = 90°, 43 axial slices, FOV = 220 mm, slice thickness
= 3 mm; voxel size = 3.44 mm ¥ 3.44 mm ¥ 3.0 mm). We
also acquired in-plane T1-weighted images (43 slices; slice
thickness = 3 mm; voxel size = .86 mm ¥ .86 mm ¥ 3.0 mm)
and high-resolution T1-weighted images (spoiled gradient
echo; 124 slices; slice thickness = 1.02 mm ¥ 1.02 mm ¥ 1.2
mm) for use in coregistration and normalization.
Functional data were preprocessed and analyzed using

Statistical Parametric Mapping (SPM8, Wellcome Depart-
ment of Cognitive Neurology, Institute of Neurology, Lon-
don). To allow for the stabilization of the blood oxygen
level–dependent signal, the first four volumes (eight sec-
onds) of each run were discarded prior to analysis. Func-
tional images were despiked using the 3dDespike program
as implemented in the AFNI toolbox. Next, data were cor-
rected for differences in the time of slice acquisition using
sinc interpolation; the first slice served as the reference
slice. Data were then spatially realigned to the first func-
tional image. We then coregistered the functional and struc-
tural images using a two-stage procedure. First, in-plane T1
images were registered to the mean functional image. Next,
high-resolution T1 images were registered to the in-plane
image. After coregistration, high-resolution structural images
were skull-stripped using the VBM8 toolbox for SPM8
(http://dbm.neuro.uni-jena.de/ vbm) and then normalized to
the skull-stripped Montreal Neurological Institute (MNI)

template provided by FSL (“MNI152_T1_1mm_ brain. nii”).
Finally, functional images were smoothed using a Gaussian
kernel (8 mm full width at half maximum). Following the
preprocessing steps, motion parameters from SPM were
examined, and no participants displayed greater than 3 mm
(translation) or 2 degrees (rotation) of head movement dur-
ing a task run.
Data were modeled at the single-subject level using the

general linear model as implemented in SPM8. The four
feedback conditions in the group feedback trials (not rated,
same, higher, and lower) were combined with outcomes
pertaining to whether participants updated their initial rec-
ommendation following feedback about group recommen-
dations (change and no change) as regressors in the model
(e.g., gHIGHER_bCHANGE indicates a block during which
a participant received higher feedback during the group
feedback trial and made a change to his initial rating during
the final rating trial). We modeled the three-second period
during which participants were exposed to the feedback as a
boxcar (duration = 3 seconds). Two of these combinations,
gNOTRATED_bCHANGE and gSAME_bCHANGE, did
not have sufficient instances across participants to be mod-
eled on their own, and so the few instances in which this
occurred were grouped with trials in which no response was
recorded under an “OTHER”/nuisance regressor condition.
The six rigid-body translation and rotation parameters
derived from spatial realignment were also included as nui-
sance regressors. Data were high-pass filtered with a cutoff
of 128 seconds. Volumes were weighted according to the
inverse of their noise variance using the robust weighted
least squares toolbox (Diedrichsen et al. 2005).
Neural Responses to Group Feedback Across Participants
First, we aimed to understand which neural processes

were associated with recommendation change across partici-
pants in response to feedback that group recommendation
differed from one’s own. We first examined neural activity
associated with receiving feedback that the peer group had
made different recommendations (gDIFFERENT = average
of higher and lower) than the participant compared with
receiving no social feedback (not rated). This contrast iden-
tifies aggregate neural processes associated with the core
feedback conditions of interest, controlling for processes
associated with considering the games and the act of mak-
ing recommendations without such feedback. In addition,
we compared neural activity associated with receiving feed-
back that the peer group had made different recommenda-
tions (gDIFFERENT) with neural activity associated with
feedback that the peer group had made the same recommen-
dation (gSAME). This second contrast compares receipt of
conflicting versus affirming social feedback. The contrasts
gDIFFERENT > gNOTRATED and gDIFFERENT >
gSAME were modeled for each participant at the single-
subject level using SPM8. The results from the first-level
models were combined at the group level using a random
effects model implemented in SPM8, using a Gaussian filter
width of 8 mm.
Next, we aimed to identify neural mechanisms associated

with changing one’s recommendations in response to feed-
back that group recommendations differed from the partici-
pants’. To explore this substantive question, we examined
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differences in behavior (change vs. no change) while receiv-
ing feedback that the peer group made different recommen-
dations (higher and lower) than the participant. The contrast
gDIFFERENT_bCHANGE > gDIFFERENT_bNOCHANGE
was modeled for each participant at the single-subject level
and combined at the group level using a parallel random-
effects model as described previously, implemented in
SPM8. All results were thresholded at p = .001, uncorrected.
All coordinates are reported in MNI space.
Individual Differences in Receptivity to Peer Feedback
We next examined individual differences in the tendency

to update one’s recommendations on the basis of peer rec-
ommendations. More specifically, we examined neural
activity in regions of interest (ROIs) that have previously
been implicated in successful recommendations (bilateral
TPJ and mPFC) and social influence (VS, subACC, anterior
insula, dACC, dmPFC, precuneus [PC]/posterior cingulate
cortex [PCC]) as defined by a meta-analysis of studies on
social influence (Cascio et al. 2015). We examined neural
activity (average percent signal change) within each ROI
between subjects as a potential correlate of the overall ten-
dency for participants to update their recommendations in
the face of feedback that peer recommendations differed
from the participant’s (percentage of trials in which the par-
ticipant changed his initial rating in response to group feed-
back). Thus, an ROI analysis enables us to examine how
individual differences in average levels of intensity within
specific neural regions during social feedback relates to a

person’s overall susceptibility to update his recommenda-
tion. This analysis differs from our whole-brain analysis in
that neural activity is extracted solely on the basis of group
feedback and does not consider behavioral outcomes. In
addition, unlike our whole-brain contrasts, which examine
within-subject differences in neural activity, our ROI analy-
sis enables us to examine between-subjects differences in
neural activity. We combined neural and behavioral data
from the App Recommendation Task in an ordinary least
squares regression, implemented in R (version 3.0.1).
ROIs based on literature on recommendations. Right and

left TPJ and mPFC ROIs (Figure 3) were constructed in
Wake Forest University PickAtlas toolbox within SPM
(Maldjian et al. 2003), combining Brodmann areas inter-
sected with x, y, z bounds (as we note subsequently) to
restrict subregions and refined in fslview on the basis of a
review of literature relevant to social cognition (courtesy of
the Pfeifer Lab). MarsBaR (Brett et al. 2002) was used to
convert these anatomical images to ROIs. The right TPJ
ROI was defined as all voxels within Brodmann areas 22,
39, and 40 intersected with a box-shaped mask centered at
(x = 60, y = –52, z = 30) and extending 40, 16, and 24 mm
along the x, y, and z axes. The left TPJ was a mirrored ver-
sion of the right TPJ. The mPFC ROI was defined as all
voxels within Brodmann area 10 and restricted medially by
intersecting a box-shaped mask that extends from x = –20 to
20, y = 45 to 70, and z = –10 to 30.
ROIs based on literature on social influence. Regions of

interest were also constructed within regions most strongly

Figure 3
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associated with social influence (AI, dACC, dmPFC,
PC/PCC, and VS) on the basis of a meta-analysis examining
social influence (Cascio et al. 2015) using GingerALE (ver-
sion 2.3) (Eickhoff et al. 2009, 2012; Turkeltaub et al.
2012). GingerALE performs an activation likelihood esti-
mation on coordinates in MNI and/or Talairach space (Eick-
hoff et al. 2009, 2012; Turkeltaub et al. 2012). We used
MarsBaR (Brett et al. 2002) to convert these images to ROIs
(Figure 4). Additional details are provided in Table S1 of the
Web Appendix.

RESULTS
Pilot Testing of the App Recommendation Task
The results from our pilot participants indicated that

information about peer recommendations significantly
altered the proportion of the time that participants changed
their final recommendations (Mnot rated = 15.38%, SDnot rated =
18.68%; Msame = 7.36%, SDsame = 12.67%; Mhigher =
22.83%, SDhigher = 22.07%; Mlower = 33.77%, SDlower =
26.24%; F(3, 103) = 32.41, p < .001). In addition, the results
of planned contrasts confirmed that participants changed
their recommendation significantly more often when peer
group recommendations differed from the participants’ ini-
tial rating (combined average of higher and lower) versus
the same condition (F(1, 105) = 85.14, p < .001) and the no-
feedback (not rated) control condition (F(1, 105) = 28.91, p <
.001). The pilot test results increased our confidence that
participants could easily understand the task and that the
feedback provided regarding group recommendations in the
App Recommendation Task could alter participants’ likeli-
hood of changing their recommendations.
fMRI Participants’ Behavioral Data
Within our main fMRI data set, participants’ recommen-

dation decisions were well dispersed across the recommen-
dation scale (initial ratings on a scale from 1 = “definitely
would not recommend” to 5 = “definitely would recom-

mend”: 1: 14.82%, 2: 24.18%, 3: 24.00%, 4: 22.38%, and 5:
13.83%). Replicating the behavioral results from pilot test-
ing, we first examined the relationship between the type of
peer feedback provided and participants’ changes from their
initial recommendations to final recommendations. The
peer feedback manipulation exerted effects parallel to those
observed in our pilot testing, such that we observed signifi-
cant differences in how frequently participants changed their
recommendations across feedback conditions (Mnot rated =
17.38%, SDnot rated = 18.84%; Msame = 9.31%, SDsame =
14.06%; Mhigher = 40.15%, SDhigher = 23.07%; Mlower =
54.00%, SDlower = 22.87%; F(3, 62) = 60.93, p < .001; Fig-
ure 4). Participants changed their recommendations signifi-
cantly more often when peer group feedback was different
from their initial rating (combined average of higher and
lower; Mdifferent = 46.66%, SDdifferent = 22.92%) versus the
same condition (F(1, 64) = 178.07, p < .001) and the no-
feedback (not rated) control condition (F(1, 64) = 102.82, p <
.001). In addition, we examined changes in recommenda-
tion behavior across initial recommendation conditions to
determine whether participants were more likely to change
their behavior depending on how they initially rated the
apps. The results indicated that participants did not signifi-
cantly change their recommendations more or less often
depending on their initial recommendation (F(4, 61) = 1.13,
p = .291).
Neural Processes Associated with Recommendation Change
Across Participants
Within subjects, we examined the neural mechanisms that

preceded participants changing their recommendations. We
broke this process down by first examining neural activity
associated with feedback that the group made different recom-
mendations than the participant (compared with not receiv-
ing any social feedback; gDIFFERENT > gNOTRATED).
This contrast controls for processes related to exposure to
the mobile game app information as well as for general 
processes associated with considering one’s own recom-
mendation. The resulting contrast highlights activity related
to receiving socially relevant feedback that peers’ 
recommendations differ from that of the participant. On
average, we found the precuneus, dACC, putamen, dorso-
lateral prefrontal cortex, and parahippocampal gyrus,
among other regions, were significantly more active while
receiving feedback that the peer group made different 
recommendations from the participant versus receiving 
no social feedback (uncorrected p = .001; Figure 5). We
found no significant activity in the reverse contrast 
(gNOTRATED > gDIFFERENT). For a full list of activa-
tions, see Table 1.
Next, we examined neural activity associated with feed-

back that the group made different recommendations than
the participant (compared with receiving social feedback
that is the same as the participant; gDIFFERENT >
gSAME). This contrast controls for the task-related activity
noted previously but is comparable to a socially affirming
condition. On average, we found that the precuneus, TPJ/
angular gyrus, and globus pallidus, among other regions, were
significantly more active while receiving feedback that the
peer group made different recommendations from the par-
ticipant versus receiving feedback that the peer group made
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Figure 4
CHANGE IN INITIAL RECOMMENDATIONS
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Notes: We calculated the change in initial recommendations by examin-
ing the percentage of trials in which participants changed their initial pre-
scan recommendation in response to peer group feedback. Participants
gave their final recommendations during the final block of the fMRI group
App Recommendation Task. All conditions are significantly different from
one another at p < .001. Error bars represent standard errors of the mean.
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the same recommendations as the participant (uncorrected 
p = .001; Figure 6). We found no significant activity in the
reverse contrast (gSAME > gDIFFERENT). For a full list
of activations, see Table 2.1
Finally, we examined the neural mechanisms associated

with changing (vs. not changing) recommendations when
group recommendations differed from the participants’. More
specifically, we examined neural activity while participants
received feedback that the group made different recommen-
dations than they did and subsequently changed versus did
not change their behavior (gDIFFERENT_bCHANGE >

gDIFFERENT_bNOCHANGE). On average, we found
that regions of the VS and OFC were significantly more
active when participants changed versus did not change
their recommendations when receiving feedback that
the group made different recommendations (uncorrected
p = .001; Table 3; Figure 7). In other words, when par-
ticipants showed more activity in the VS and OFC in
response to group recommendations that conflicted with
their initial recommendations, they were more likely to
change their recommendations in response to this social
feedback. No regions were significantly more active in
the inverse contrast (gDIFFERENT_bNOCHANGE >
gDIFFERENT_bCHANGE).

Figure 5
GROUP FEEDBACK: DIFFERENT VERSUS NOT RATED

dACC

t-statistic

Putamen

Dorsolateral
Prefrontal
CortexPC/PCC

Notes: This figure shows a whole-brain analysis examining the contrast gDIFFERENT > gNOTRATED during the group block of the App Recommendation
Task (uncorrected p = .001, K ≥ 5).
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Table 1
WHOLE-BRAIN ANALYSIS EXAMINING THE DIFFERENCE BETWEEN EXPOSURE TO GROUP FEEDBACK THAT DIFFERED FROM

PARTICIPANTS’ INITIAL RECOMMENDATION VERSUS NOT RECEIVING GROUP FEEDBACK (gDIFFERENT > gNOTRATED)

Region                                                                              x                                  y                                  z                                  K                                  t
Putamen (left)                                                               –23                                –2                                –5                                40                               3.81
Parahippocampal gyrus (right)                                       11                                  1                              –32                                  6                               3.58
Frontal pole (right)                                                         25                                70                                –5                                  6                               3.37
Dorsolateral prefrontal cortex (left)                             –26                                60                                31                              107                               4.19
dACC (left)                                                                  –23                                15                                31                                69                               5.08
—                                                                                –13                                21                                34                                    
—                                                                                –20                                –5                                34                                  5                               3.48
dACC (right)                                                                  15                                12                                40                                42                               4.41
Precuneus (right)                                                              4                              –43                                40                                32                               3.95
Supramarginal gyrus (right)                                           32                              –53                                25                                  9                               3.64
Middle temporal gyrus (right)                                       49                              –57                                13                                36                               4.26
Middle temporal gyrus (left)                                        –51                              –47                                  7                                40                               4.43
Inferior temporal gyrus (left)                                       –64                              –57                              –11                                  6                               3.90
Inferior temporal gyrus (right)                                       49                              –60                              –20                                12                               3.52
—                                                                                  59                                –9                              –38                                34                               4.51
Caudate tail (right)                                                         25                              –40                                10                                14                               3.83
Occipital lobe (right)                                                      49                              –74                                28                                28                               4.19
—                                                                                  11                              –88                              –14                                29                               3.71
Occipital lobe (left)                                                      –30                              –91                                34                                  8                               3.70
Cerebellum (left)                                                          –37                              –57                              –44                              156                               4.37
Notes: Uncorrected p = .001, K ≥ 5.

1Whole-brain results examining differences between higher and lower
feedback appear in the Web Appendix, Tables S2–S4.



Activity in the Right TPJ Correlates with Individual
Differences in One’s Tendency to Incorporate Group
Feedback into Recommendations
Finally, we examined whether activity in ROIs previously

implicated in successful recommendation behavior and
social influence during peer feedback that diverged from the
participants’ initial recommendation (gDIFFERENT)
related to which participants were most likely to change
their initial recommendations in the face of this feedback.
We found that within our hypothesized ROIs, only
increased activity in right TPJ during feedback that the
group made recommendations different from the participant
significantly correlated with the participant’s tendency to
change his recommendation in the face of peer feedback 
(r = .25, t(63) = 2.09, p = .041). However, one participant had
neural activity that was 3.88 standard deviations above the

mean; thus, we reperformed the analysis after removing this
participant. The results were consistent after this outlier was
removed (r = .27, t(62) = 2.25, p = .028; Figure 8).2 In other
words, participants who showed more activity in the right
TPJ when receiving social feedback that the group made
different recommendations from their own changed their
recommendations of the game apps more frequently than
participants who showed less activity in right TPJ during
this type of feedback. Table 4 presents a full list of results.3
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Figure 6
GROUP FEEDBACK: DIFFERENT VERSUS SAME

t-statisticGlobus Pallidus
Angular Gyrus

Inferior Temporal
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Notes: This figure shows a whole-brain analysis examining the contrast gDIFFERENT > gSAME during the group block of the App Recommendation Task
(uncorrected p = .001, K ≥ 5).
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Table 2
WHOLE-BRAIN ANALYSIS EXAMINING THE DIFFERENCE BETWEEN EXPOSURE TO GROUP FEEDBACK THAT DIFFERED FROM
PARTICIPANTS’ INITIAL RECOMMENDATION VERSUS FEEDBACK THAT THE GROUP MADE THE SAME RECOMMENDATION

(gDIFFERENT > gSAME)

Region                                                                              x                                  y                                  z                                  K                                  t
Globus pallidus (left)                                                   –26                              –16                                –5                                  8                               3.57
Precuneus (right)                                                            21                              –49                                18                                33                               4.03
Angular gyrus (left)                                                     –47                              –77                                40                                  5                               3.5
TPJ/supramarginal gyrus (left)                                    –54                              –40                                28                                12                               3.53
Inferior temporal gyrus (right)                                       56                              –19                              –32                                25                               4.32
Inferior temporal gyrus (left)                                       –61                                –5                              –38                                11                               3.62
Cerebellum                                                                     –2                              –78                              –20                                48                               3.63
Cerebellum (left)                                                          –57                              –64                              –29                                11                               3.93
—                                                                                –40                              –81                              –32                                22                               3.96
—                                                                                –19                              –91                              –32                                17                               4.02
—                                                                                –33                              –57                              –44                                10                               3.97
Cerebellum (right)                                                          39                              –29                              –32                                15                               4.99
—                                                                                  32                              –84                              –38                                56                               4.04
—                                                                                  28                              –70                              –47                                13                               3.84
Notes: Uncorrected p = .001, K ≥ 5.

2In addition, it should be noted that the ROI results have been presented
without Bonferroni correction and therefore should be interpreted with
caution; future studies that replicate these findings will strengthen confi-
dence in the effects observed.

3Anatomically defined versions of the meta-analytic ROIs (AI, dACC,
dmPFC, PC/PCC, and VS) were also examined. All ROIs yielded null
results (p > .05).
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DISCUSSION
The recent rapid growth of online and mobile technology

(Bold and Davidson 2012; Hampton 2012) has increased
reliance on aggregated recommendation systems for choos-
ing everything from mobile game apps to household prod-
ucts to restaurants and vacation destinations. Consumers use
opinions of unknown peers in making relatively important
decisions, and such recommendations can facilitate decision
making by making the processes easier and more helpful
(Dabholkar 2006; Mudambi and Schuff 2010). Furthermore,
in aggregate, viral trends can be a result of cascading rec-
ommendations reinforcing one another (Phelps et al. 2004).
This suggests that information shared with other potential
consumers may be influenced by the current average group
recommendation. However, prior research has not examined
the underlying mechanisms that lead consumers to update
their feedback in the face of peer recommendations or what
leads some people to do so more readily.
We report evidence from two groups of participants

(behavioral pilot and fMRI) showing that (1) online recom-
mendations can be significantly influenced by information
about what others recommend but (2) people are not uni-
formly susceptible to such influence. Participants changed
their recommendations most often when receiving feedback
that others had made different recommendations than their
own and least often when group opinions reinforced their
initial recommendation or when no social feedback was

given. The tendency to incorporate this social feedback into
the final ratings, however, varied across participants, with
some participants readily updating their initial recommen-
dations and others sticking consistently to their initial
views.
With behavioral data alone, it is difficult to address the

extent to which people might conform in their public rec-
ommendations to avoid social consequences of deviating
from group opinions, conform because they come to see
value in the recommendations of the group, or both. It is
also difficult to know whether additional processes beyond
those found to correlate with conformity in prior studies of
influence might be at play for influence on recommendation
decisions; people are notoriously limited in their ability to
accurately report on the internal psychological states that
precede such decisions (Dijksterhuis 2004; Nisbett and Wil-
son 1977) and may have self-presentation concerns related
to their decision-making process. Thus, to complement our
behavioral results, we examined neural activity using fMRI
as participants engaged with an online recommendation sys-
tem in the presence and absence of information about peer
recommendations. We focused on the neural mechanisms
associated with decisions to update one’s recommendation
to be consistent with group recommendations measured
within subject as well as individual differences in suscepti-
bility to social influence on recommendation behavior,
observed as the tendency to update recommendations (pro-

Table 3
WHOLE-BRAIN ANALYSIS EXAMINING THE DIFFERENCE BETWEEN CHANGING ONE’S RECOMMENDATION WHILE BEING

EXPOSED TO GROUP FEEDBACK THAT DIFFERED FROM PARTICIPANTS’ INITIAL RECOMMENDATION VERSUS MAINTAINING
ONE’S INITIAL RECOMMENDATION (gDIFFERENT_bCHANGE > gDIFFERENT_bNOCHANGE)

Region                                                                              x                                  y                                  z                                  K                                  t
VS/OFC (left)                                                               –16                                  8                              –23                                10                               3.68
OFC/temporal pole (right)                                             39                                22                              –23                                12                               3.92
VS/OFC (right)                                                              15                                  8                              –23                                  8                               3.77
Notes: (uncorrected p = .001, K ≥ 5).

Figure 7
DIFFERENT GROUP FEEDBACK: RECOMMENDATION CHANGE VERSUS NO CHANGE

t-statistic
VS

OFC

Notes: This figure shows a whole-brain analysis examining the contrast gDIFFERENT_bCHANGE > gDIFFERENT_bNOCHANGE during the group
block of the App Recommendation Task (uncorrected p = .001, K ≥ 5).
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portion of trials in which each participant changed their ini-
tial recommendation when the group’s recommendation dif-
fered from his own).
Recommendation Change Within Subjects
Although relatively widespread activity was associated

with feedback that group recommendations differed from
the participant’s, only neural activity within the VS and
OFC was significantly greater when participants changed
their recommendation rather than maintaining their initial
recommendation. Although these results should be inter-
preted with caution because of the relatively small cluster
sizes, the findings are consistent with previous research on
social influence. In prior studies, the VS and OFC have
been implicated in changing individual preferences in
response to different forms of social influence in a range of
individual decision-making contexts (Campbell-Meiklejohn
et al. 2010; Chein et al. 2011; Mason, Dyer, and Norton
2009), and in positive valuation more broadly (Bartra,
McGuire, and Kable 2013). This may suggest that beyond
mere self-presentation concerns, adolescent recommenders
may update their recommendations, on average, when they
experience actual positive value in the recommendations of
others, as opposed to merely conforming publicly while pri-
vately derogating the opinions of others. In this sense, social
influence on recommendation behavior may parallel social
influence on other types of decision making.
Prior research on adolescent samples has also demon-

strated that the mere presence of peers sensitizes these neu-
ral regions, which in turn influence decision making (Chein

et al. 2011); the recommendation context may effectively
surround adolescent recommenders with imagined others
(e.g., potential recipients of their recommendations, other
recommenders) and heighten receptivity to relevant social
information and potential for social rewards resulting from
making socially consistent recommendations. It is possible
that the effects observed are particularly pronounced during
adolescence, a developmental period characterized by
heightened sensitivity to social cues. Future developmental
comparisons are warranted to establish whether similar pro-
cesses also support updating recommendation decisions into
and across adulthood.
Diverging partially from previous studies of conformity

in adolescents and young adults, however, we did not find
that neural activity in brain regions associated with conflict
monitoring, social pain, or broader social cognition were
associated with increased recommendation change within
subjects. As reviewed by Izuma and Adolphs (2013) and
Falk, Way, and Jasinka (2012), several studies have impli-
cated regions of the posterior medial prefrontal cortex
(including the dACC and dmPFC) in conformity, in addition
to affective processing regions (e.g., the anterior insula). For
example, Berns et al. (2010) examine the relationship
between music preferences and popularity ratings. They
find that increased activity within the anterior insula and
dACC were correlated with an increased likelihood to
change one’s evaluation in the face of social feedback com-
pared with evaluations made in the absence of social feed-
back. Given that these neural regions had previously been
associated with affective salience and conflict monitoring
(Carter et al. 1998; Critchley et al. 2005; Eisenberger 2012;
Eisenberger, Lieberman, and Williams 2003; Kerns et al.
2004), Berns et al. interpret these findings as suggesting that
conflict detection and negative affect associated with
diverging from peer opinions may prompt conformity. Like-
wise, Klucharev et al. (2009) report that the dACC was
associated both with feedback that group opinions differed
from those of the participant and with actual conformity.
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Figure 8
SCATTERPLOT OF THE ANATOMICAL RIGHT TPJ

CORRELATED WITH THE PERCENTAGE OF TRIALS IN WHICH
THE PARTICIPANT CHANGED HIS RECOMMENDATION WHEN
RECEIVING FEEDBACK THAT THE GROUP MADE DIFFERENT
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Notes: r = .27, p = .028.

Table 4
SUMMARY OF THE ZERO-ORDER CORRELATIONS BETWEEN

NEURAL ACTIVITY IN ROIs AND UPDATING
RECOMMENDATIONS IN THE FACE OF PEER GROUP

FEEDBACK

                                                                          t                 r                p
Anatomically Defined ROIs

Right TPJ                                                   2.25            .27             .028a
Left TPJ                                                       .75            .09             .458
mPFC                                                       –1.43          –.18             .158

Meta-Analytically Defined ROIs
Anterior insula                                             .36            .05             .721
dACC                                                           .22            .03             .827
Dorsomedial prefrontal cortex                    .93            .12             .354
PC/PCC                                                     –.03          –.00             .975
VS                                                              –.41          –.05             .683
                                                                                 d.f. = 63
aResults reported with outlier removed, d.f. = 62.
Notes: This table is derived from literature on successful recommenda-

tions and is based on a meta-analysis of social influence and participants’
overall likelihood of updating their recommendation in the face of peer
group feedback that differed from their own.
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We observed increased activity in the dACC when par-
ticipants were exposed to peer recommendations that were
different from their own compared with exposure to no peer
feedback; however, in the current study this activity was not
associated with actual recommendation behavior change.
One possibility is that our participants were less sensitive to
rejection than the participants observed by Berns et al.
(2010), who report that their participants were particularly
risk averse, potentially carrying over to social domains;
however, Klucharev et al. (2009) do not specifically high-
light such an explanation. Although our data cannot speak
directly to this point, it is also possible that recommendation
decisions may differ from personal preference endorsement
in the perceived affective consequences of the decision; that
is, recommendations may not reflect a participant’s personal
opinion but rather what he believes others will value.
More directly consistent with Klucharev et al. (2009), we

also observed a significant increase in precuneus activity
during group recommendations that differed from the par-
ticipant’s compared with feedback that the group made the
same recommendation as well as no group feedback. Con-
sistent with the explanation offered by Klucharev et al., in
the context of recommendation decisions, the precuneus
may also aid in conflict monitoring or tracking divergent
group recommendations. The precuneus has also been
implicated in mentalizing processes (Fletcher et al. 1995;
Spunt, Falk, and Lieberman 2010). For example, a study
examining why versus how people perform actions shows
that “why” actions were associated with increased activity
in the precuneus and right TPJ (Spunt, Falk, and Lieberman
2010). Also consistent with this explanation, we observed
activity in the ventral putamen during exposure to conflict-
ing group recommendations versus not receiving feedback.
Similarly, increased ventral putamen activity has been asso-
ciated with maintaining prediction error in the actor/critic
model of reinforcement learning, suggesting that the ventral
putamen contributes to the prediction of future outcomes
(O’Doherty et al. 2004). Finally, going beyond what has
previously been highlighted in studies of social influence on
individual preferences, we also observed activity within the
TPJ, a key component of the mentalizing system, during
divergent compared with reinforcing group recommendations.
Taken together, our results suggest that the process of

updating recommendations in response to peer recommen-
dations shares some qualitative commonalities, but evi-
dences some potential differences, with social influence on
individual preferences. In particular, consistent with prior
work on social influence for personal preferences, the pre-
cuneus is associated with receiving divergent social infor-
mation, whereas neural activity within the valuation system
is associated with actual change. Furthermore, although
activity in subregions of the posterior medial frontal cortex
were observed both in our study with conflicting recom-
mendations and in prior studies of individual preference
shifts, we did not observe additional relationships between
activity in these regions and recommendation behavior
change. Further research that directly compares recommen-
dation and personal preference ratings may be able to speak
more directly to the robustness and potential causes of such
divergence.

Individual Differences in Susceptibility to Recommendation
Change
In addition to examining the processes that were associ-

ated with recommendation change on average across par-
ticipants, we also examined individual differences in ten-
dency to change recommendations in response to peer
recommendations. Our results demonstrated that increased
activation in the right TPJ was significantly associated with
an increased susceptibility to social influence on recom-
mendation behavior. These results dovetail with prior stud-
ies demonstrating that increased activation of the TPJ is
associated with successful message propagation/being a
more effective communicator or “idea salesperson”
(Dietvorst et al. 2009; Falk et al. 2013). More specifically,
previous work examining the spread of ideas has found that
activation of the TPJ could differentiate between communi-
cators who were able to successfully propagate their pre-
ferred ideas to others versus those who were not (Falk et al.
2013). As Falk et al. (2013) note, the TPJ may be key to
simulating the mental states of others in current interactions
as well as in preparing for successful social interactions in
the future. Our findings extend these results to suggest that
TPJ is involved not only in the simulation of the mental
states of others but also in more actively using social infor-
mation provided to arrive at a final recommendation deci-
sion. Consistent with the idea that the TPJ may facilitate
both preparation and execution of successful social inter-
actions, activity in the TPJ is also associated with greater
ability of actual salespeople to get inside the minds of their
customers—a salesperson theory-of-mind index (Dietvorst
et al. 2009). This salesperson theory-of-mind index has also
been associated with indicators of better sales performance.
In conjunction with these prior studies, our data may sug-
gest that adolescents who have an increased tendency to
consider the mental states of others are also more likely to
incorporate that information into their own recommenda-
tion. Further research is needed to explore whether this
might also increase the chance of successfully transmitting
ideas that are preferred by more peers.
More generally, these results also expand our understand-

ing of the role of TPJ in theory of mind to include an
increasingly common task in day-to-day life—publicly
committing our recommendations for the benefit of others.
The right TPJ is shown to be particularly active when con-
sidering the mental states of others (Saxe and Kanwisher
2003; Saxe and Wexler 2005). Furthermore, a meta-analysis
examining theory of mind, empathy, attention orientation,
and sense of agency demonstrates that the right TPJ is
active across all four conditions (Decety and Lamm 2007).
Thus, the authors suggest that the right TPJ is involved in
generating, testing, and modifying our internal predictions
on the basis of external stimuli (Decety and Lamm 2007).
Finally, research examining how participants make socially
guided decisions has found that the right TPJ helped people
track socially relevant stimuli in the environment that were
then used to help guide future decisions and behavior
(Carter et al. 2012). Results from the current study demon-
strate that those who show increased activity in the TPJ
when making a recommendation are more influenced by
social feedback. Thus, although our current data cannot
speak directly to this conclusion, in combination with prior



studies (Dietvorst et al. 2009; Falk et al. 2013), they may
suggest that people who are more influential communica-
tors in society might also more readily incorporate social
norms and cues in their final recommendations and that
those who effectively influence others may be more open to
social information regarding an issue, idea, product, or
brand.
Implications for Marketing
The influence of word of mouth is becoming increasingly

apparent as society moves toward online commerce and rec-
ommendation systems, in which consumer recommenda-
tions are quantified and attached to everything from where
to eat to what car to buy. Researchers have posited that the
presence of consumer recommendations improves a con-
sumer’s perception of the usefulness and social presence of
a website (Kumar and Benbasat 2006); our results suggest
one set of possible mechanisms that could underpin such
effects and demonstrate effects that go beyond what has
been observed in prior studies of social influence on indi-
vidual preferences. The present findings lay the groundwork
for further research that integrates neural mechanisms into
the exploration of whether (1) increased susceptibility to
social influence when making recommendations leads to
more effective propagation and (2) people who exhibit such
susceptibility derive mental health benefits, social benefits,
or connection from doing so. Furthermore, future studies
examining social influence, word of mouth, and the spread
of ideas may use the neural regions identified to prospec-
tively predict when and how people are most likely to update
their recommendations and how these processes interact
with social network position. A successful campaign launch
depends on having a good product or idea coupled with the
right community of people to spread and reinforce informa-
tion in the most direct way (Aral and Walker 2011, 2012;
Hinz et al. 2011; Van der Lans et al. 2010; Watts and Dodds
2007).
Study Limitations
As with any study, several limitations should be consid-

ered when interpreting the reported findings. One such limi-
tation is that this study is a first attempt at creating an fMRI
task that examines the influence of social feedback on par-
ticipants’ recommendations; for simplicity, feedback condi-
tions were limited to lower, higher, same, and not rated.
However, additional comparison conditions could be useful
in further specifying the psychological mechanisms respon-
sible for effects observed. For example, it would be worth-
while to examine nonsocial feedback that differs from that
of the participant (e.g., feedback that is believed to be com-
puter generated that mimics recommendations one may
receive from websites while online shopping). This would
allow for the comparison of social versus nonsocial feed-
back that differs from that of the participant to better under-
stand what is unique about processing social feedback.
Future studies might also benefit from directly comparing
influence on recommendation and personal preference deci-
sions. The current study makes qualitative comparisons
with other published studies that have examined social
influence on user opinions; however, direct examination of
these differences within the same study would allow for a

quantitative comparison of neural differences in processing
social feedback associated with one’s opinion versus one’s
recommendation. Finally, given the set of regions previ-
ously implicated in social influence, we explored several
potential ROIs as correlates of individual differences in sus-
ceptibility to influence on recommendations. Further
research that replicates our findings with even more targeted
hypotheses will add confidence to the results.
A second category of limitations stems from the fact that

participants were told that the group feedback provided
within the task is an average recommendation calculated
from peers who had previously taken part in the study; how-
ever, we gave no specific information about these “peers.”
Future studies might manipulate who is providing the social
feedback to shed light on how similar versus dissimilar social
others may change how social information is processed.
Recent research has begun to examine neural responses
associated with conforming to in-group and out-group opin-
ions (Stallen, Smidts, and Sanfey 2013). In this work, in-
group conformity > nonconformity was associated with
increased activity in the subACC, posterior superior tempo-
ral sulcus/insula, caudate, and hippocampus, suggesting
potential roles for both positive valuation of in-group opin-
ions and mentalizing in conforming to in-group opinions.
A third limitation is that participants were asked to make

recommendations about each app; however, in a real-world
context, not all of these participants would engage in this
type of behavior. Therefore, it would be useful to know
which participants are more likely to carry out these behav-
iors in the real world, which could be tracked using observa-
tional downstream behavioral measures. Similarly, our peer
recommendations were pseudorandomly computer gener-
ated, and similar studies might benefit from naturalistic
observation of how such processes evolve with real peers to
confirm that similar processes occur (cf. Salganik, Dodds,
and Watts 2006).
Finally, the current study examines social influence in the

context of male adolescents as part of a larger investigation of
risky adolescent driving behavior, which limits generaliza-
tions to other populations of interest. It would be valuable to
expand these results to include female adolescents, young
adults, and adult populations to compare whether neural
patterns of activation are similar across development and
other demographic groups. In particular, adolescent cogni-
tive control systems that facilitate self-regulation mature
differently than affective processing systems (Blakemore
2008, 2012; Casey, Getz, and Galvan 2008; Steinberg 2008)
and function differently according to social context (Pfeifer
and Allen 2012). Social cues are especially salient during
adolescence, and it is possible that sensitivity to social cues
may differ in adolescents compared with adult populations.
In parallel, brain systems that support recommendation
decisions would also vary across development. Each of the
limitations reviewed here offers opportunities for further
research that could easily be integrated into the App Recom-
mendation Task.

CONCLUSION
In the present study, we examine the intersection of social

influence and social sharing (recommendations) in the con-
text of a rapidly growing market sector: mobile game appli-
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cations. We found that peers’ recommendations had signifi-
cant impact on the final recommendations of male adoles-
cent recommenders. Although neural activity in a constella-
tion of regions previously implicated in susceptibility to
social influence was associated with processing feedback
that group recommendations differ from one’s own, actually
updating recommendations in response to this feedback
within subjects was limited to activity in the VS and OFC.
These results highlight the possibility that incorporating
peer recommendations into one’s own recommendation
goes beyond mere public compliance and may also reflect
updating of internal valuation of the opinions of others. We
also observed individual differences in the tendency to
incorporate peer recommendations into one’s own recom-
mendation; only neural activity within the right TPJ was
related to individual differences in susceptibility to social
influence on recommendation behavior. In conjunction with
previous studies finding that those who show increased
activity in the TPJ during initial idea exposure are better at
propagating their preferred ideas, this may suggest that rec-
ommenders who are most attuned to the social environment
might incorporate the recommendations and views of others
more often in developing their own recommendations. More
broadly, the results of this study provide insight into the
psychological and neurocognitive processes underlying rec-
ommendations and address important basic psychological
forces that help people share and spread ideas.
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