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The Problem

Let Yt = 1 if | have a migraine attack on day t; let Yt = 0 otherwise. Let Xt = 1if | drink at least
one cup of coffee that day; let X =0 otherwise. The probability of a migraine on day t given
how much coffee | drink that day X, and given the occurrence of an attack the day before Y .

is Pr(Yt = 1|Xt, Yt_l).

Suppose my own personally true causal mechanism is:

probit(Pr(Yt = 1|Xt, Yt_l)) = Bo + BXXt + Bth_1 + BXthYt—l (1)

Suppose we're interested in the APTE specified as the risk difference
Pr(Yt = 1|Xt =1) — Pr(Yt = 1|Xt = 0) when X is randomized. Note that this quantity is

marginalized over Y _ . How can | estimate this APTE when | never randomized X ?

The Solution

Link

We often use a link function n(p) to link the expectation of Y conditional on its predictors {X, W},
denoted u = E(Y|X, W). When Y is binary, we typically use the link functions n(n) = logit(u) or
n(w) = probit(p) to relate the conditional expectation of Y, y, to its predictors. When Y is
continuous, we typically use the identity link n(w) = I(p) = p.

Using this link function, we can specify the conditional APTE (i.e., conditioned on W) as
nEX|X = 1,W)) — n(EY|X = 0, W)) whenever X is not associated with Y—as when X is
randomized. However, we are usually interested in the APTE defined using the marginalized
quantity E(Y|X = a), rather than the more conditional quantity E(Y|X = a, W).

In particular, for a given link function n, we are usually interested in the APTE specified as
611 = nEY|X = 1)) — n(E(Y|X = 0)) whenever X is not associated with Y. Because the value

of X is set in this expression, each expectation is really just a function of Y. This may be clearer
when using potential outcomes notation, which essentially indexes Y (as a superscript) based

on a value of X: 8 = NEXYD) = nEX).
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Law

Under the law of total expectation (LTE), we have E(Y|X = a) = EW{E(Y|X =a W)X = a}.

When using the identity link, the LTE can be used to directly relate n(E(Y|X = a, W)) to
EY|X = a):

E,MEYIX = a,W)IX = a) = E {E(Y|X = ¢ W)|X = a}

= E(Y|X = a)

If X is randomized, we have EW{E(Y|X =a W)X =a} = EW{E(Y|X = a, W)}. G-computation
simply sets the right-side expectation equal to the desired quantity: E(Y|X = a) had X been

randomized. In terms of potential outcomes, the g-formula states E(Y") = E {EY|X = a, W)}

Probit

The probit link requires a bit more consideration. Let 3 represent the p x 1 vector of p
coefficient parameters, with first element BO for the intercept. Let V represent a conformable

1 x p vector of coefficient values, with 1 as its first element and the other elements consisting of
X and W variables. In equation (1), X = Xt, w = Yt_l, B = ([30, BX, By, Bxy)', and

V= (1,Xt, Yt—l' Xth—1)' Let V* represent V with X set to a. In equation (1),

a
V=(Q,aq Yt_l, aYt_l).

LetY € {0, 1}, and define u(X) = E(Y|X) = Pr(Y = 1|X) and
wX, W) = E(Y|X,W) = Pr(Y = 1|X,W). By the LTE, we have u(X) = E_{u(X, W)|X}.

Suppose we first model pu(X, W) using the probit link as probit(u(X, W)) = CIJ_l(u(X, w)) = VB,

where ®(z) is the cumulative distribution function of the standard normal distribution. Hence,
nX, w) = o(Vp) and:

nX)  =E, {@(VB)IX}

=E (@B, +BX +B, W+ B, XW)X) for equation (1)
=[®@, +BX +B,w + B, Xw)dF (w|X)

X X X X
=[d( +d w)dF , (w|X) where ¢’ =B + B Xandd =B +B, X



[ o + d'wydF, (w]X)

1
S o(c" +d w)Pr(W = w|X) because W =Y, and Y € {0, 1} forall t

w=0

(Y Pr(W = 0]X) + (" + d) Pr(w = 1]X)

d(H{1 — Pr(W = 11X)} + O(" + d) Pr(W = 1|X)

o) = O Pr(W = 11X) + (" + dY Pr(w = 11X%)

o) + (@ +d) — o) Pr(w = 11%)

Redux

In terms of equation (1), we have:
X X X X
X)) = () + (@ +d) — o )p,

where

o u(X) =E(Y|X)=Pr(Y =1|X)

X
o p e
b
° d =B, +B,X
o p, =Pr(Y_ =1]X)

If X is randomized, then p,= T and:

KX) = o) + {o(c" +d) — d()m

Consider the observed risk difference:

d = E(Y X, = 1) — E(Y |X_= 0)

= Pr(Y, = 11X, = 1) — Pr(¥, = 1|X, = 0)

u(1) = w0

[@(c) + {®(c' +d) — d(Hp] — [@() + (@’ +d) — @(c)p,]

O(c) + (@' +d) = d(Hp, — D) — (@ +d) — d(c)p,



®(c) + D +d)p, — d(cHp, — D) — d(c’ +d)p, + D(cp,

o(c) — d(cHp, — D) + D, + (¢’ +d)p, — b +d)p,

D)1 =p) = D)L =py) + Bc +d)Ip, — (c +d)p,

O@, + YA —p) — ®BI1 —p,) +
OB, + B, + B, + B, )P, — DB, + BP,

If X is randomized, then p,=TmT for X € {0, 1}, and we have the APTE:

= o) - 1) — D)L - M) + B +dI)m— b +d)n

probit
= (@) = DA = 1) + (@' +d) = o +d)n
= (@B, +B) — DB — ™ +
(@B, + B, +B, +B,) — OB, + BN

Note that (1 — pX) -1-m=1- Py~ l1+nt=m-— Py Hence, the difference between

this APTE and the non-randomized observed risk difference is:

d— 296

@A —p) — P()A —p) + D +d)Ip, — (c +d)p} —

probit
(@dEHA - m - A - W) + o +d)m — o+ dHm)
= d(c)(m —p) — ST —p) + @ +d)(p, - ™ — D +d)p, - ™
= OB, + B ) —p,) — PBIT - p) +
OB, + B, +B, +B, )P, — ™ — B, +BIP, — 1
Bayes

Bayes’ theorem states:

P, Pr(Yt_1 = 1|Xt = a)
Pr(Xt:a|Yt_1:1)Pr(Yt_

Pr(X t:a)

D




Pr(Xt=a|Y[7

1=1)T[
Pr(Xt=a)

Let o= Pr(Xt = 1) = Pr(X = 1) represent the overall probability of drinking more than one

cup of coffee on any given day. Hence:

P, — P, = Pr(Yt_1 = 1|Xt= 1) — Pr(Yt_1 = 1|Xt =0)
Pr(X,=1|y, =1)n Pr(X,=0lY, =1)m
- Pr(X,=1) Pr(X,=0)
Pr(X =1y, =Dm  {1-Pr(x,=1|Y,_ =Dj}m
T, 1-m,
Pr(X=1ly,_=Dm  {1-Pr(x =1|Y_ =Dj}m
T, 1-m,
Pr(X =1[Y, =Dm(1-m,) ™ (1-Pr(X =1|Y,_=D}r
- ™ (1-T ) - ™ (1- )
Pr(X,=1|Y,_ =1m(1-m)-m {1-Pr(X =1Y _ =1)}n

TrX(l—‘r[X)

Pr(Xt= 1| Y = 1)1T—PI‘(Xt= 1| Y

= 1)1T1TX—1T1TX+PI‘(Xt=1 | Y_

1=1)mtx

nx(l—nx)

Pr‘(Xt=1|Yt71=1)T[—TT‘ﬂCX

nX(l —nx)

n{Pr(Xt= 1] Yt—1=1)_nx}

nx(l—nx)

If X andY _ are unassociated, then Pr(X = 1Y

Tr{Pr(Xt= 1| Yt_1=1)—1tx}

nx(l—nx)

P, — D,

1T(1TX—T[X)

T[X(l—‘l'[X)

0

nx(l—nx)
0

All Together Now

The relevant parameters for the example we used in

=1) = Pr(Xt =1) = T, . Hence:

the section “A Head of My Self” are:



° BX = 0 because “drinking more coffee didn’t increase my migraine chances” (i.e., direct

effect)

° Pr(Xt = 1|Yt_ =1) > T, because “getting a migraine the day before caused me to

1
sleep less—and this tended to make me drink more coffee the next day”
° BY > 0 because “a migraine attack yesterday also directly increased my chances of

getting a migraine today”
° BXY > 0 because “whenever | had a migraine attack the day before, this gave coffee the

ability to cause a migraine attack the next day” (i.e., effect modification)

These imply:

d

OB —p) — DB —p) +

O, + B, + B, )p, — (B, +Bp,

@I —p) — (1 —p)} +

O@, + B, + B, )0, — PB, +BP,

OBIP, — p) + DB, + B, + B, )P, — DB, + B,)P,

@(B,) — B — ™ + (®@, + B, +B,,) — (B, + BT

probit

(@B, + B, +B,,) — P, + BT

O, + B, + B, )T — DB, + BT
d-38 = @ —p) — DB —p,) +

probit

O@, + B, + B, )P, — ™) — DB, + B )P, — ™

OBIP, —p,) + P, + B, + B, )P, — ™) — BB, +B)P, ~ ™

In the example, we assumed d >> Spr . This made me conclude that drinking more coffee

ob
increased my migraine chances—a spurious conclusion about a direct effect that was actually
zero. (The overall average effect was slightly greater than zero due to effect modification by
lagged migraine attacks.)



