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The Problem

Let if I have a migraine attack on day ; let otherwise. Let if I drink at least𝑌
𝑡
= 1 𝑡 𝑌

𝑡
= 0 𝑋

𝑡
= 1

one cup of coffee that day; let otherwise. The probability of a migraine on day given𝑋
𝑡
= 0 𝑡

how much coffee I drink that day , and given the occurrence of an attack the day before ,𝑋
𝑡

𝑌
𝑡−1

is .Pr(𝑌
𝑡
= 1|𝑋

𝑡
, 𝑌

𝑡−1
)

Suppose my own personally true causal mechanism is:

(1)𝑝𝑟𝑜𝑏𝑖𝑡(Pr(𝑌
𝑡
= 1|𝑋

𝑡
, 𝑌

𝑡−1
)) = β

0
+ β

𝑋
𝑋
𝑡
+ β

𝑌
𝑌
𝑡−1

+ β
𝑋𝑌
𝑋
𝑡
𝑌
𝑡−1

Suppose we’re interested in the APTE specified as the risk difference
when is randomized. Note that this quantity isPr(𝑌

𝑡
= 1|𝑋

𝑡
= 1) − Pr(𝑌

𝑡
= 1|𝑋

𝑡
= 0) 𝑋

marginalized over . How can I estimate this APTE when I never randomized ?𝑌
𝑡−1

𝑋
𝑡

The Solution

Link

We often use a link function to link the expectation of conditional on its predictors ,η(µ) 𝑌 {𝑋, 𝑊}
denoted . When is binary, we typically use the link functions orµ = 𝐸(𝑌|𝑋, 𝑊) 𝑌 η(µ) = 𝑙𝑜𝑔𝑖𝑡(µ)

to relate the conditional expectation of , , to its predictors. When isη(µ) = 𝑝𝑟𝑜𝑏𝑖𝑡(µ) 𝑌 µ 𝑌
continuous, we typically use the identity link .η(µ) = 𝐼(µ) = µ

Using this link function, we can specify the conditional APTE (i.e., conditioned on ) as𝑊
whenever is not associated with —as when isη(𝐸(𝑌|𝑋 = 1,𝑊)) − η(𝐸(𝑌|𝑋 = 0,𝑊)) 𝑋 𝑌 𝑋

randomized. However, we are usually interested in the APTE defined using the marginalized
quantity , rather than the more conditional quantity .𝐸(𝑌|𝑋 = 𝑎) 𝐸(𝑌|𝑋 = 𝑎,𝑊)

In particular, for a given link function , we are usually interested in the APTE specified asη
whenever is not associated with . Because the valueδ

η
= η(𝐸(𝑌|𝑋 = 1)) − η(𝐸(𝑌|𝑋 = 0)) 𝑋 𝑌

of is set in this expression, each expectation is really just a function of . This may be clearer𝑋 𝑌
when using potential outcomes notation, which essentially indexes (as a superscript) based𝑌

on a value of : .𝑋 δ
η
= η(𝐸(𝑌1)) − η(𝐸(𝑌0))
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Law

Under the law of total expectation (LTE), we have .𝐸(𝑌|𝑋 = 𝑎) = 𝐸
𝑊
{𝐸(𝑌|𝑋 = 𝑎,𝑊)|𝑋 = 𝑎}

When using the identity link, the LTE can be used to directly relate toη(𝐸(𝑌|𝑋 = 𝑎,𝑊))
:𝐸(𝑌|𝑋 = 𝑎)

𝐸
𝑊
{η(𝐸(𝑌|𝑋 = 𝑎,𝑊))|𝑋 = 𝑎} = 𝐸

𝑊
{𝐸(𝑌|𝑋 = 𝑎,𝑊)|𝑋 = 𝑎}

= 𝐸(𝑌|𝑋 = 𝑎)

If is randomized, we have . G-computation𝑋 𝐸
𝑊
{𝐸(𝑌|𝑋 = 𝑎,𝑊)|𝑋 = 𝑎} = 𝐸

𝑊
{𝐸(𝑌|𝑋 = 𝑎,𝑊)}

simply sets the right-side expectation equal to the desired quantity: had been𝐸(𝑌|𝑋 = 𝑎) 𝑋

randomized. In terms of potential outcomes, the g-formula states .𝐸(𝑌𝑎) = 𝐸
𝑊
{𝐸(𝑌|𝑋 = 𝑎,𝑊)}

Probit

The probit link requires a bit more consideration. Let represent the vector ofβ 𝑝 × 1 𝑝
coefficient parameters, with first element for the intercept. Let represent a conformableβ

0
𝑉

vector of coefficient values, with 1 as its first element and the other elements consisting of1 × 𝑝
and variables. In equation (1), , , , and𝑋 𝑊 𝑋 = 𝑋

𝑡
𝑊 = 𝑌

𝑡−1
β = (β

0
, β

𝑋
, β

𝑌
, β

𝑋𝑌
)'

. Let represent with set to . In equation (1),𝑉 = (1, 𝑋
𝑡
, 𝑌

𝑡−1
, 𝑋

𝑡
𝑌
𝑡−1

) 𝑉𝑎 𝑉 𝑋 𝑎

.𝑉𝑎 = (1, 𝑎, 𝑌
𝑡−1

, 𝑎𝑌
𝑡−1

)

Let , and define and𝑌 ∈ {0, 1} µ(𝑋) = 𝐸(𝑌|𝑋) = Pr(𝑌 = 1|𝑋)
. By the LTE, we have .µ(𝑋,𝑊) = 𝐸(𝑌|𝑋, 𝑊) = Pr(𝑌 = 1|𝑋, 𝑊) µ(𝑋) = 𝐸

𝑊
{µ(𝑋, 𝑊)|𝑋}

Suppose we first model using the probit link as ,µ(𝑋,𝑊) 𝑝𝑟𝑜𝑏𝑖𝑡(µ(𝑋, 𝑊)) = Φ−1(µ(𝑋, 𝑊)) = 𝑉β
where is the cumulative distribution function of the standard normal distribution. Hence,Φ(𝑧)

and:µ(𝑋,𝑊) = Φ(𝑉β)

µ(𝑋) = 𝐸
𝑊
{Φ(𝑉β)|𝑋}

for equation (1)= 𝐸
𝑊
(Φ(β

0
+ β

𝑋
𝑋 + β

𝑊
𝑊 + β

𝑋𝑊
𝑋𝑊)|𝑋)

= ∫Φ(β
0
+ β

𝑋
𝑋 + β

𝑊
𝑤 + β

𝑋𝑊
𝑋𝑤)𝑑𝐹

𝑊
(𝑤|𝑋)

where and= ∫Φ(𝑐𝑋 + 𝑑𝑋𝑤)𝑑𝐹
𝑊
(𝑤|𝑋) 𝑐𝑋 = β

0
+ β

𝑋
𝑋 𝑑𝑋 = β

𝑊
+ β

𝑋𝑊
𝑋



= ∫Φ(𝑐𝑋 + 𝑑𝑋𝑤)𝑑𝐹
𝑊
(𝑤|𝑋)

because and for all=
𝑤=0

1

∑ Φ(𝑐𝑋 + 𝑑𝑋𝑤) Pr(𝑊 = 𝑤|𝑋) 𝑊 = 𝑌
𝑡−1

𝑌 ∈ {0, 1} 𝑡

= Φ(𝑐𝑋) Pr(𝑊 = 0|𝑋) + Φ(𝑐𝑋 + 𝑑𝑋) Pr(𝑊 = 1|𝑋)

= Φ(𝑐𝑋){1 − Pr(𝑊 = 1|𝑋)} + Φ(𝑐𝑋 + 𝑑𝑋) Pr(𝑊 = 1|𝑋)

= Φ(𝑐𝑋) − Φ(𝑐𝑋) Pr(𝑊 = 1|𝑋) + Φ(𝑐𝑋 + 𝑑𝑋) Pr(𝑊 = 1|𝑋)

= Φ(𝑐𝑋) + {Φ(𝑐𝑋 + 𝑑𝑋) − Φ(𝑐𝑋)} Pr(𝑊 = 1|𝑋)

Redux

In terms of equation (1), we have:

µ(𝑋
𝑡
) = Φ(𝑐𝑋) + {Φ(𝑐𝑋 + 𝑑𝑋) − Φ(𝑐𝑋)}𝑝

𝑋

where

● µ(𝑋
𝑡
) = 𝐸(𝑌

𝑡
|𝑋

𝑡
) = Pr(𝑌

𝑡
= 1|𝑋

𝑡
)

● 𝑐𝑋 = β
0
+ β

𝑋
𝑋
𝑡

● 𝑑𝑋 = β
𝑌
+ β

𝑋𝑌
𝑋
𝑡

● 𝑝
𝑋
= Pr(𝑌

𝑡−1
= 1|𝑋

𝑡
)

If is randomized, then and:𝑋 𝑝
𝑋
= π

µ(𝑋
𝑡
) = Φ(𝑐𝑋) + {Φ(𝑐𝑋 + 𝑑𝑋) − Φ(𝑐𝑋)}π

Consider the observed risk difference:

𝑑 = 𝐸(𝑌
𝑡
|𝑋

𝑡
= 1) − 𝐸(𝑌

𝑡
|𝑋

𝑡
= 0)

= Pr(𝑌
𝑡
= 1|𝑋

𝑡
= 1) − Pr(𝑌

𝑡
= 1|𝑋

𝑡
= 0)

= µ(1) − µ(0)

= [Φ(𝑐1) + {Φ(𝑐1 + 𝑑1) − Φ(𝑐1)}𝑝
1
] − [Φ(𝑐0) + {Φ(𝑐0 + 𝑑0) − Φ(𝑐0)}𝑝

0
]

= Φ(𝑐1) + {Φ(𝑐1 + 𝑑1) − Φ(𝑐1)}𝑝
1
− Φ(𝑐0) − {Φ(𝑐0 + 𝑑0) − Φ(𝑐0)}𝑝

0



= Φ(𝑐1) + Φ(𝑐1 + 𝑑1)𝑝
1
− Φ(𝑐1)𝑝

1
− Φ(𝑐0) − Φ(𝑐0 + 𝑑0)𝑝

0
+ Φ(𝑐0)𝑝

0

= Φ(𝑐1) − Φ(𝑐1)𝑝
1
− Φ(𝑐0) + Φ(𝑐0)𝑝

0
+ Φ(𝑐1 + 𝑑1)𝑝

1
− Φ(𝑐0 + 𝑑0)𝑝

0

= Φ(𝑐1)(1 − 𝑝
1
) − Φ(𝑐0)(1 − 𝑝

0
) + Φ(𝑐1 + 𝑑1)𝑝

1
− Φ(𝑐0 + 𝑑0)𝑝

0

= Φ(β
0
+ β

𝑋
)(1 − 𝑝

1
) − Φ(β

0
)(1 − 𝑝

0
) +

Φ(β
0
+ β

𝑋
+ β

𝑌
+ β

𝑋𝑌
)𝑝

1
− Φ(β

0
+ β

𝑌
)𝑝

0

If is randomized, then for , and we have the APTE:𝑋 𝑝
𝑋
= π 𝑋 ∈ {0, 1}

δ
𝑝𝑟𝑜𝑏𝑖𝑡

= Φ(𝑐1)(1 − π) − Φ(𝑐0)(1 − π) + Φ(𝑐1 + 𝑑1)π − Φ(𝑐0 + 𝑑0)π

= (Φ(𝑐1) − Φ(𝑐0))(1 − π) + (Φ(𝑐1 + 𝑑1) − Φ(𝑐0 + 𝑑0))π

= (Φ(β
0
+ β

𝑋
) − Φ(β

0
))(1 − π) +

(Φ(β
0
+ β

𝑋
+ β

𝑌
+ β

𝑋𝑌
) − Φ(β

0
+ β

𝑌
))π

Note that . Hence, the difference between(1 − 𝑝
𝑋
) − (1 − π) = 1 − 𝑝

𝑋
− 1 + π = π − 𝑝

𝑋

this APTE and the non-randomized observed risk difference is:

𝑑 − δ
𝑝𝑟𝑜𝑏𝑖𝑡

= {Φ(𝑐1)(1 − 𝑝
1
) − Φ(𝑐0)(1 − 𝑝

0
) + Φ(𝑐1 + 𝑑1)𝑝

1
− Φ(𝑐0 + 𝑑0)𝑝

0
} −

{Φ(𝑐1)(1 − π) − Φ(𝑐0)(1 − π) + Φ(𝑐1 + 𝑑1)π − Φ(𝑐0 + 𝑑0)π}

= Φ(𝑐1)(π − 𝑝
1
) − Φ(𝑐0)(π − 𝑝

0
) + Φ(𝑐1 + 𝑑1)(𝑝

1
− π) − Φ(𝑐0 + 𝑑0)(𝑝

0
− π)

= Φ(β
0
+ β

𝑋
)(π − 𝑝

1
) − Φ(β

0
)(π − 𝑝

0
) +

Φ(β
0
+ β

𝑋
+ β

𝑌
+ β

𝑋𝑌
)(𝑝

1
− π) − Φ(β

0
+ β

𝑌
)(𝑝

0
− π)

Bayes

Bayes’ theorem states:

𝑝
𝑎

≡ Pr(𝑌
𝑡−1

= 1|𝑋
𝑡
= 𝑎)

=
Pr(𝑋

𝑡
=𝑎|𝑌

𝑡−1
=1)Pr(𝑌

𝑡−1
=1)

Pr(𝑋
𝑡
=𝑎)



=
Pr(𝑋

𝑡
=𝑎|𝑌

𝑡−1
=1)π

Pr(𝑋
𝑡
=𝑎)

Let represent the overall probability of drinking more than oneπ
𝑋
= Pr(𝑋

𝑡
= 1) = Pr(𝑋 = 1)

cup of coffee on any given day. Hence:

𝑝
1
− 𝑝

0
= Pr(𝑌

𝑡−1
= 1|𝑋

𝑡
= 1) − Pr(𝑌

𝑡−1
= 1|𝑋

𝑡
= 0)

=
Pr(𝑋

𝑡
=1|𝑌

𝑡−1
=1)π

Pr(𝑋
𝑡
=1) −

Pr(𝑋
𝑡
=0|𝑌

𝑡−1
=1)π

Pr(𝑋
𝑡
=0)

=
Pr(𝑋

𝑡
=1|𝑌

𝑡−1
=1)π

π
𝑋

−
{1−Pr(𝑋

𝑡
=1|𝑌

𝑡−1
=1)}π

1−π
𝑋

=
Pr(𝑋

𝑡
=1|𝑌

𝑡−1
=1)π

π
𝑋

−
{1−Pr(𝑋

𝑡
=1|𝑌

𝑡−1
=1)}π

1−π
𝑋

=
Pr(𝑋

𝑡
=1|𝑌

𝑡−1
=1)π(1−π

𝑋
)

π
𝑋
(1−π

𝑋
) −

π
𝑋
{1−Pr(𝑋

𝑡
=1|𝑌

𝑡−1
=1)}π

π
𝑋
(1−π

𝑋
)

=
Pr(𝑋

𝑡
=1|𝑌

𝑡−1
=1)π(1−π

𝑋
)−π

𝑋
{1−Pr(𝑋

𝑡
=1|𝑌

𝑡−1
=1)}π

π
𝑋
(1−π

𝑋
)

=
Pr(𝑋

𝑡
=1|𝑌

𝑡−1
=1)π−Pr(𝑋

𝑡
=1|𝑌

𝑡−1
=1)ππ

𝑋
−ππ

𝑋
+Pr(𝑋

𝑡
=1|𝑌

𝑡−1
=1)ππ

𝑋

π
𝑋
(1−π

𝑋
)

=
Pr(𝑋

𝑡
=1|𝑌

𝑡−1
=1)π−ππ

𝑋

π
𝑋
(1−π

𝑋
)

=
π{Pr(𝑋

𝑡
=1|𝑌

𝑡−1
=1)−π

𝑋
}

π
𝑋
(1−π

𝑋
)

If and are unassociated, then . Hence:𝑋
𝑡

𝑌
𝑡−1

Pr(𝑋
𝑡
= 1|𝑌

𝑡−1
= 1) = Pr(𝑋

𝑡
= 1) = π

𝑋

𝑝
1
− 𝑝

0
=

π{Pr(𝑋
𝑡
=1|𝑌

𝑡−1
=1)−π

𝑋
}

π
𝑋
(1−π

𝑋
)

=
π(π

𝑋
−π

𝑋
)

π
𝑋
(1−π

𝑋
)

= 0
π
𝑋
(1−π

𝑋
)

= 0

All Together Now
The relevant parameters for the example we used in the section “A Head of My Self” are:



● because “drinking more coffee didn’t increase my migraine chances” (i.e., directβ
𝑋
= 0

effect)
● because “getting a migraine the day before caused me toPr(𝑋

𝑡
= 1|𝑌

𝑡−1
= 1) > π

𝑋

sleep less—and this tended to make me drink more coffee the next day”
● because “a migraine attack yesterday also directly increased my chances ofβ

𝑌
> 0

getting a migraine today”
● because “whenever I had a migraine attack the day before, this gave coffee theβ

𝑋𝑌
> 0

ability to cause a migraine attack the next day” (i.e., effect modification)

These imply:

𝑑 = Φ(β
0
)(1 − 𝑝

1
) − Φ(β

0
)(1 − 𝑝

0
) +

Φ(β
0
+ β

𝑌
+ β

𝑋𝑌
)𝑝

1
− Φ(β

0
+ β

𝑌
)𝑝

0

= Φ(β
0
){(1 − 𝑝

1
) − (1 − 𝑝

0
)} +

Φ(β
0
+ β

𝑌
+ β

𝑋𝑌
)𝑝

1
− Φ(β

0
+ β

𝑌
)𝑝

0

= Φ(β
0
)(𝑝

0
− 𝑝

1
) + Φ(β

0
+ β

𝑌
+ β

𝑋𝑌
)𝑝

1
− Φ(β

0
+ β

𝑌
)𝑝

0

δ
𝑝𝑟𝑜𝑏𝑖𝑡

= (Φ(β
0
) − Φ(β

0
))(1 − π) + (Φ(β

0
+ β

𝑌
+ β

𝑋𝑌
) − Φ(β

0
+ β

𝑌
))π

= (Φ(β
0
+ β

𝑌
+ β

𝑋𝑌
) − Φ(β

0
+ β

𝑌
))π

= Φ(β
0
+ β

𝑌
+ β

𝑋𝑌
)π − Φ(β

0
+ β

𝑌
)π

𝑑 − δ
𝑝𝑟𝑜𝑏𝑖𝑡

= Φ(β
0
)(π − 𝑝

1
) − Φ(β

0
)(π − 𝑝

0
) +

Φ(β
0
+ β

𝑌
+ β

𝑋𝑌
)(𝑝

1
− π) − Φ(β

0
+ β

𝑌
)(𝑝

0
− π)

= Φ(β
0
)(𝑝

0
− 𝑝

1
) + Φ(β

0
+ β

𝑌
+ β

𝑋𝑌
)(𝑝

1
− π) − Φ(β

0
+ β

𝑌
)(𝑝

0
− π)

In the example, we assumed . This made me conclude that drinking more coffee𝑑 >> δ
𝑝𝑟𝑜𝑏𝑖𝑡

increased my migraine chances—a spurious conclusion about a direct effect that was actually
zero. (The overall average effect was slightly greater than zero due to effect modification by
lagged migraine attacks.)


