
HOW TO WRITE AN
ACTION-BASED TESTING (ABT)

TEST MODULE

WHITEPAPER

logigear.com

TABLE OF CONTENTS

Introduction...1

Test Module Template..2

Example of a completed Test Module..3

Creating the ABT Test Module for Restaurant Reservations.........................4

logigear.com

INTRODUCTION

logigear.com1

Action Based Testing (ABT) is an efficient method of test development that
provides a systematic approach to increase the success of automated testing.

ABT uses Test Modules to increase the efficiency of test development. Test mod-
ules provide a level of abstraction over test cases and make it possible to create
well-defined test case flows. The top-down planning approach helps to create test
cases that are free of unnecessary details and redundant checks. Test cases them-
selves are authored using actions that make the tests readable and that can be
automated with minimal programming support.

Below is a template that shows the systematic construct of a Test Module. Follow-
ing the template is an example of a complete Test Module and the step-by-step
sequence of ABT test development.

LogiGear Headquarters

Phone: (650) 572-1400
sales@logigear.com

testarchitect.com
logigear.com

logigear.com

TEST MODULE TEMPLATE

2

Test Modules are containers for organizing tests of user stories or software requirements. Organized this
way every test module will have a clear and well-differentiated scope from every other test module, and it
will reduce redundant activities and checks, making tests less fragile and easier to maintain. Giving each
Test Module a descriptive name makes it easy to identify what the test in the module cover.

There are four sections to a Test Module: Objectives, Initial, Test Case
and Final

3. The TEST CASE section is where test cases are created. Each test case has a representative
number, accompanied by title and test objective line. The title and objective explain the test case
purpose. Test Modules can have multiple test cases and each may have one or more test objectives
associated with it.

4. The FINAL section is for any cleanup operation upon test completion, such as closing the
application under test.

1. The OBJECTIVES section
lists every objective asso-
ciated with the module’s
test cases and defines
the scope of the test
module. Objectives allow
readers to understand why
test cases are designed
the way they are, and give
an auditor a quick insight
into the correctness and
completeness of a test.

2. The INITIAL section of a
test module contains the
action lines required for
initialization of the test.
For example, actions for
launching the application
under test would be
written here. This will
avoid repetitive steps in
test cases when initializa-
tion is required for multiple
test cases in the module.

logigear.com

EXAMPLE OF A COMPLETED TEST MODULE

3

The Test Module example below is for a test of a restaurant reservation application. It follows the user story
“As a registered user, I want to be able to reserve, change and cancel a restaurant reservation”.

The test module starts with a
listing of the objectives that the
tests in this module need to meet.

The initial section contains sign in
data and variables for reservation
dates.

The "pick date" action assigns a
date a given numbers of days from
now, to a variable. (In TestArchi-
tect variables are preceded with
"#", to indicate an expression).

Test Case 1. User signs in and
creates a reservation at the
restaurant Evvi that is confirmed
by email. Verification is done by
sampling the confirmation a
customer will receive. This
illustrates the flexibility of actions
to express the intention of a tester.

Test Case 2. Changes are made
individually to
1) first the party size
2) then the date/time. Both check
for email confirmation.

Test Case 3. Several fields are
changed in one transaction.

Test Case 4. Tests that a reserva-
tion can be cancelled.

The final section of the module
signs out and closes the browser.

logigear.com

CREATING THE ABT TEST MODULE FOR RESTAURANT
RESERVATIONS

4

1. Structure

Test modules typically contain tests for "business" or "interaction". Business tests will be like "Restaurant
Reservations". The details of how to reserve a table are contained in the actions. Interaction tests verify the
more detailed interactions with the UI (or API) of an application. Activities could be "enter user name", "enter
password", "click log in button". It’s important to make sure business functionality is not the focus of interac-
tion tests, and that no interaction steps are used in a business test.

2. Defining Test Objectives

Test objectives are the break-down of the scope of test module. They should focus on what to test— not how
to test. Test objective should be clear, descriptive and distinct. An objective can be described using “cause
and effect” format as shown for Restaurant Reservations:

3. Test Case authoring

Test case authoring in ABT is done in a structured way using actions. Actions make the test case is readable
for outsiders with relatively little knowledge of technology and omit the details that are not essential to under-
stand a test. Details that are needed to execute the test (like which menu item to choose to open a dialog box)
should not be visible in a test module unless they are important to the scope of that test module. All the
details to execute the test should be contained in the actions.

Test Case 1 is a business test case that uses two actions—“make reservation” and “check confirmation
email”— and passes appropriate test data to those two actions. Without seeing the UI of the AUT, it can be
deduced that the action “make reservation” reserves a table at the specified restaurant with details such as
party size, date and time. The other action “check confirmation email” checks whether the email sent to the
user contains the expected content. All the steps (and complexity), to make a reservation or check the email
content, are abstracted within those two actions.

(Note: ‘#’ is an operator in ABT Language to retrieve value of the following variable)

logigear.com

CREATING THE ABT TEST MODULE FOR RESTAURANT
RESERVATIONS (cont.)

5

Structure and Syntax

Tests will typically consist of actions specifying activity and verification. Often verification will follow the
activity, but they can also be mixed. It is customary to start the names of verification actions with the word
"check".

Lines 24 and 27 are action lines (or actions) in the test case.

To name an action, use a verb followed by an object. The name of an action and its argument should be
descriptive and associated with AUT’s GUI or business process.

Arguments are typically the input values needed to do the desired operation in action. All arguments carry
default values (which can be empty), and are therefore optional. When the action is used, only input the
arguments that matter for that particular context of the test.

4. Action Definition
At some point in the process actions have to be defined and created. Below is an example of the “make
reservation” action definition.

(Note: ‘#’ is an operator in ABT Language to retrieve
value of the following variable)

The action definition provides more
details about making a reservation , how-
ever it’s not specified, nor necessarily
important, what the AUT looks like or
what kind of UI interactions have to be
done (which are very easy to change).
What’s important is to push as much
detail as possible to the lower level of
actions.
In this example, the action “make reser-
vation” also calls other actions (“search
restaurant” and “set reservation details”)
that would each have their own action
definitions with details.

	ABT test module (1)
	ABT test module (2)
	ABT test module (3)
	ABT test module (4)
	ABT test module (5)
	ABT test module (6)
	ABT test module (7)

