
LogiGear Whitepaper

www.testarchitect.com

https://www.testarchitect.com/

LogiGear Whitepaper

www.testarchitect.com

TABLE OF CONTENT

Why Keywords? 02

Economic Advantage 03

Criteria for a Good KDT Solution 07

A Real-world Problem

 Example scenario

 Old-school KDT frameworks

 Advantages of old-school KDT approach

08

Disadvantages of old-school KDT approach

 Recursive Keyword Combination

 Action-Based Testing™ (ABT)

 Example test case in Action-Based Testing

 Advantages of Action-Based Testing

 Methodology should be embedded in a product

 The combo of Action-Based Testing & TestArchitect™

11

Conclusion 18

Author Section 18

https://www.testarchitect.com/

LogiGear Whitepaper

www.testarchitect.com

Keyword-Driven testing has served us well for decades but, like everything else, it

evolves. This paper inspects the common mistakes in implementing Keyword-

Driven Testing solutions. Most significantly, we’ll analyze the setbacks of the noun-

based keyword approach along with the direct mapping between a keyword and

its code. Later on we’ll discuss a modern approach to Keyword-Driven Testing

namely Action-Based Testing.

Why Keywords?

B
efore the invention of Keyword-Driven Testing (KDT), Test Automation was a little

messier. For each test scenario, you had to code all of the interactive steps and

check points in a specific programming language such as VBScript, Java or C#. That

meant everyone on our team must be a professional coder. Or worse yet, (as we often

joke) a full stack super human a.k.a. professional tester slash coder. We invented that

nickname because one had the glorious task of handling both testing and coding

simultaneously back then.

Furthermore, you couldn’t reuse previously coded steps and checkpoints in similar test

scenarios. Every test scenario authored by different tester-slash-coder super human had a

different implementation. Poor Reusability not only reduced test production throughput but

also devastated Maintainability of test scripts. Test Automation artifacts became a liability

more than an asset.

Keyword-Driven Testing was born out of those needs to achieve Decoupling, Reusability

and Maintainability.

 KDT enables clear division of labor. Keywords are awesome because they allow you to

separate test automation into two distinct activities, Test Design and Test Automation,

which can be worked on in parallel. Programming staff who chooses to specialize in

coding will implement the keywords of which the rest of the team can reuse. On the

other hand, non-programming staff whose expertise is on the domain knowledge and

business logic side are not required to engage with coding. They just need to focus on

designing the right test cases for applicable business processes.

 KDT makes our code base “leaner”. Once a piece of code doing a specific function is

abstracted and encapsulated, you can call it over and over again with different

parameters, free from duplicating your code.

 KDT allows us to embrace inevitable changes in Agile development. Since you’re

recalling the piece of code, not duplicating it, you only need to modify one isolated

piece of code when the app under test (AUT) changes. It doesn’t matter if you’ve

called it thousands of times from thousands of places. This is similar to the superiority of

Procedural Programming over Unstructured Programming (“spaghetti code”).

https://www.testarchitect.com/

LogiGear Whitepaper

www.testarchitect.com

All of these benefits yielded improved Productivity and Speed for test teams who were

among the early adopters of KDT. Since your automation framework needs very little

overhead to keep running, your hands are now free to focus on refactoring old tests and

writing new tests to increase Test Quality and Test Coverage (especially when combined

with Data-Driven Testing). Over time, your test project will scale with flying colors.

Economic Advantage of Keyword-Driven Testing

Let’s dive into how Keyword-Driven Testing saves you cost. In the early-days stage of test

automation, automating a test case means translating all test steps written in English to a

code file that will be executed against the AUT over and over again. Thus, you will notice

the direct correlation between the number of test cases designed, and the number of test

cases coded.

Test Cases Test Cases Designed Test Cases Coded

10 10 10

50 50 50

100 100 100

500 500 500

1000 1000 1000

2000 2000 2000

5000 50000 5000

With KDT, you still have to design & code the test cases as well as the keywords but the

amount of code has been reduced dramatically. You can expect the number of keywords

coded in KDT to increase at a slower pace.

Test Cases Test Cases Designed Reusable Keyword Coded

10 10 40

50 50 60

100 100 70

500 5000 150

1000 1000 200

2000 2000 200

5000 5000 200

Our first 10 test cases might require 40 keywords. But automating 1,000 test cases will only

need 200 keywords. And tests beyond that will require no additional keywords, reducing

work for the automation engineers.

https://www.testarchitect.com/

LogiGear Whitepaper

www.testarchitect.com

To visualize the cost savings of Keyword-Driven Testing in this particular scenario, let’s

assume the following:

- A business tester can design 4 test cases per hour (with the salary of $60/hour)

- An experienced automation engineer can code 2 keywords per hour (with the salary of

$100/hour)

Using these figures, we can make the following comparison between the costs of test

development using the early-days test automation approach versus Keyword-Driven

Testing.

As the chart illustrates, the early-days test automation approach is cheaper if we automate

a very small number of test cases. But as the number of test cases grows, KDT becomes far

cheaper. In this example, KDT is more expensive until we’ve created roughly 63 tests (at the

cost of $4,095).

https://www.testarchitect.com/

LogiGear Whitepaper

www.testarchitect.com

In the long run, KDT becomes significantly cheaper than the early-days test automation

approach as illustrated in the graph below.

When Keyword-Driven Fails

Keyword-Driven Testing is sweet but… sometimes it comes with a pinch of salt. The

methodology is not inherently faulty in itself. Actually, KDT principles are very simple and

effective as we’ve analyzed earlier. However, successfully building and running a KDT

framework in reality is not a trivial task. Just like great ideas such as Agile and DevOps,

there’s usually a huge fracture between theory and practice.

In-house KDT framework

Plenty of open-source KDT solutions are out there and they are quite easy to adopt. If we

choose to build our own KDT framework from scratch, we should keep an eye on these

challenges:

Labor division separates testing from coding but we should remember that it doesn’t

completely eliminate coding. Someone on the team has to “eat the frog” and learn to

code from Day-1.

For maximum reusability, it’s worthwhile to make an upfront investment (usually a

substantial one) on the architecture of the KDT framework. As you might already know,

system architects experienced in test framework designing are certainly not easy to find or

cheap, but this is for a good reason. Only after we realize that we are stuck in endless

rabbit holes, we regret not hiring a more experienced architect from the beginning.

Since objects in a well-architected framework are usually more abstract, new team

members encounter a steeper learning curve. If we neglect sufficient knowledge through

https://www.testarchitect.com/

LogiGear Whitepaper

www.testarchitect.com

transferring and hands-on practices, productivity simply diminishes. You can also expect

more frustration, conflicts, and demoralization within the team.

Because implementing keywords falls in the hands of automation engineers and

automation engineers don’t always understand the business processes in sufficient detail,

they might create redundant keywords. For example, check account and verify profile

keywords probably refer to the same thing. Redundancy means poor maintainability. The

solution ought to be frequent feedback-loops between the two sub-teams (business testers

and automation engineers).

Keyword implementations are written in a programming language thus they are not very

business-readable. As a result, although business testers and domain experts want to help

automation engineers to eliminate redundant keywords, their hands are mostly tied. Again,

we should rely on better communication between the two sub-teams.

When your project starts to grow, new large-scale challenges will come in:

The test team will have to invest more time and money on each additional utility such as

Parallel Execution, Test Dispatching, DevOps Integration, Error Logging, Test Environment

Management, and Statistical Reporting. It is important to prepare for these utilities starting

from the architectural design stage.

There will be time when the test team needs to scale to another app platform, e.g. from

web to mobile. Again we must invest more time and money on implementing platform-

specific keywords. Beware of this hidden cost. Free-of-charge open-source solutions are not

completely free after all.

Test production must achieve a critical mass before it can pay off the initial cost of

developing the KDT framework. The acceleration process usually takes months, if not years,

to achieve the break-even point. Clear end goals should be defined from the beginning of

the project to objectively measure the project’s success. Maximizing reusability can also

boost test development speed so that we can achieve the break-even point faster.

Off-the-shelf KDT solutions

On the other hand, if we choose to buy a commercial KDT product, we should try to avoid

the old-school style of implementing KDT because it poses certain limitations:

 In some tools, business testers define keywords in Keyword View but those keywords

have to be implemented in Code View using a programming language such as

VBScript. Therefore, coding is still necessary. It’s easy at first but it tends to be less

productive over time.

 You might receive the promise of low marginal cost in increasing test volume, but if

https://www.testarchitect.com/

LogiGear Whitepaper

www.testarchitect.com

the KDT framework in question stops at mapping one keyword to one function, the

cost is still high because you cannot recursively combine existing keywords to create

new keywords. This setback slows down test development speed and limits the scope

of the tests. We call this approach Direct Keyword-Code Mapping.

 Some products map each TestStep in a TestCase to one Test-Object representing the

GUI of the app under test (e.g. a web page). We call it the Noun-based Keyword

approach. Not only these noun-based keywords are quite hard to understand, but

they also create unnecessary maintainability problems.

Note that these problems are not limited to off-the-shelf products. If we choose an in-house

KDT framework ourselves, we still need to keep an eye on these overlooked mistakes.

No matter whether we stick with an in-house KDT framework or purchase a commercial KDT

product, if we don’t pay enough attention to these lessons learned, the next thing we know

our test project has become a train wreck. By then, most of our time will be spent on

firefighting instead of productive work.

Criteria for a Good KDT Solution

From the holistic viewpoint, regardless of your tool choice, a comprehensive KDT solution

should possess these characteristics:

 Platform-agnostic keyword implementations.

To limit coding as much as possible and scale to other app platforms, test teams need to

invest in low-level automation libraries. The key success factor is Abstraction. Keyword-

producers should hide the technology layer from keyword-users. From the keyword-users’s

point of view, keywords should be self-explanatory and platform-agnostic.

 Deliberate architectural design.

The test framework itself is an actual software product. Similar to your app under test, it

must be carefully designed to boost reusability and maintainability. Also, we should keep

in mind that we might need to add new utilities into the framework later on. The principle

here is solving today’s problems while laying the bricks for future growth.

 Enable collaborative test design.

To avoid creating redundant keywords, automation engineers and business testers should

build a common understanding of the business objects and business processes. They also

need to work hand-in-hand in defining common test assets (reusable keywords that both

parties comprehend). This is more like a process solution than a product solution but if

your KDT framework enables creating business-readable keywords, communication will

be much easier.

 Neither Noun-based Keywords nor Direct Keyword-Code Mapping.

These approaches might sound very tempting at first but in the long run, they tend to do

more harm than good. Noun-based Keyword approach promises that after

automatically capturing the AUT’s GUI, you can drag-n-drop keywords to create new

https://www.testarchitect.com/

LogiGear Whitepaper

www.testarchitect.com

tests right away. The catch is your tests become very hard to refactor. On the other hand,

Direct Keyword-Code Mapping hinders reusability by tight-coupling a keyword with a

piece of code (usually a function in a programming language). So it’s better off for us to

stay away from these rabbit holes at all cost.

A Real-world Problem

In the following sections, we’ll analyze the Noun-based keyword and Direct Keyword-Code

Mapping approaches in more detail. Then we’ll discuss their cures: Verb-based Keywords,

and Recursive Keyword Combination.

Example scenario

Suppose we are testing the flight cost calculation function of an airline website. After you

choose the departure and return flights, you will be given the total cost. That number of

should be the sum of the departure flight’s cost, return flight’s cost as well as taxes and fees.

We’ll verify whether the total cost is calculated correctly. The test flow will look like this.

https://www.testarchitect.com/

LogiGear Whitepaper

www.testarchitect.com

Old-school KDT frameworks

In some of the famous old-school KDT frameworks, here’s how to automate this test scenar-

io:

 Noun-based Keyword Approach. You’d typically construct your test by dragging-n-

dropping noun-based keywords from a pre-defined library to a TestCase. Each

TestStep in a TestCase is a keyword call. And each keyword represents a window or a

web page.

 Direct Keyword-Code Mapping. Inside one keyword, you cannot call other keywords.

Only TestCase can contain keyword calls. This is because each keyword is tied to a

piece of code and that piece of code is not exposed to you for modification.

https://www.testarchitect.com/

LogiGear Whitepaper

www.testarchitect.com

Advantages of old-school KDT approach

Admittedly, the old-school KDT approach is still more convenient than the early-days auto-

mation technique, mostly because:

https://www.testarchitect.com/

LogiGear Whitepaper

www.testarchitect.com

 Methods like input, get value, and verify have been implemented so you don’t have

to code them yourself. The underlying technology specifics of these methods are hid-

den from view so that you can focus on writing the tests. This is the platform-agnostic

criterion we discussed earlier.

 The framework “scans” the app’s GUI to automatically generate the keywords for

you, e.g. home page, departure page, return page, etc. This scanning feature is use-

ful to speed up test development. If your app under test is not complicated and your

business logics are straightforward, you can finish test automation in the matter of

days.

 You can reuse keywords like home page in another test scenario without duplicating

any code. Just drag-n-drop them into the next test scenario. Reusability boosts test

development speed.

Disadvantages of old-school KDT approach

Albeit, the old-school KDT approach poses several setbacks:

Problems resulting from Noun-based Keyword Approach

Readability

As you might notice, each step of the test case is a noun – name of

the web page. If you have to execute the test manually, you don’t

actually know what to “do”. Noun-based keyword approach

hinders the test’s readability. We have to eye-witness the app’s GUI

in order to understand the test. What if during the early phase of

development, the developers haven’t finished the app GUI? In such

case, testers usually have to wait for the GUI to “stabilize” before

they can start automating. Testing the business logics alone from

Day-1 is impossible.

Maintainabitily

Let’s say all of the sudden, business requires that the departure

page and return page must be combined into one page. How

would we handle that? Normally we have to:

 Capture a new keyword for the new combined page, e.g. travel

dates page

 For every test scenario that previously went through the

Departure and Return pages, we have to replace departure

page and return page keywords by one travel dates page

keyword.

Needless to say, this is a mundane and time consuming task.

https://www.testarchitect.com/

LogiGear Whitepaper

www.testarchitect.com

Redundancy Although you don’t need to interact with the whole page, you still

have to drag-n-drop the entire keyword into the test case. For in-

stance, in the above example, we didn’t need to tick the one-way

radio button or change the default value (“Economy”) of the class

combobox. But since they exist in the home page keyword (in case

another TestCase needs them), they still appear in this particular Test-

Case.

Problems resulting from Direct Keyword-Code Mapping

A Modern KDT Solution

Verb-based Keywords

To avoid the aforementioned undesirable consequences of the Noun-based Keyword

approach, we propose an alternative namely Verb-based Keyword approach. Particularly

in this approach, keywords begin with a verb (specifying intent) instead of a noun. Each

test step is a call to a verb-based keyword, which follows by several arguments so the test

tool knows what to do with the target object in a specific circumstance.

https://www.testarchitect.com/

LogiGear Whitepaper

www.testarchitect.com

The result is better readability. Your tests become friendlier to business testers and domain

experts. They can guess what the actions are supposed to perform by merely looking at

their names and arguments such as search flight or select flight.

Recursive Keyword Combination

To fix Direct Keyword-Code Mapping’s setbacks, we’d propose a different approach called

Recursive Keyword Combination. Essentially, it means the inside content of a keyword

should be exposed to business testers so that they can “program” it themselves by simply

calling other keywords. This frees business testers from depending on automation engineers.

Given this power, business testers can take matters into their own hands to create more

business-level keywords from Day 1 without waiting for automation engineers or having to

eye-witness the app’s GUI. All activities, including test designing, keyword implementing,

and app developing can be done in parallel.

Additionally, when new test scenarios pop up, business testers are the ones who know best

about which keywords should be reused or newly created. Automation engineers only

need to focus on the technology specifics of implementing the keywords which the

business testers ask for. They don’t need to wonder whether creating a certain keyword is

necessary or not. This eliminates redundancy, at least at the business-level.

Action-Based Testing™ (ABT)

With the mindset of overcoming old-school KDT’s shortcomings while staying loyal to KDT

core principles, we put together a methodology namely Action-Based Testing™ (ABT). ABT

is the better version of old-school Keyword-Driven Testing because it incorporates the

aforementioned Verb-based Keyword and Recursive Keyword Combination approaches.

The core concept in ABT is Actions – verb-based keywords. Test cases consist of actions.

Each action accepts a set of parameters and executes one atomic function, such as

clicking on a control in a window. An action is similar to a procedure in Procedural

Programming. Below is an example of an ABT action:

As you might notice, window and control are the most important arguments of an action

call. In ABT, one window is mapped to one Interface Entity in which each Interface Element

is mapped to a control.

Your test scenarios, which share the same test objectives or requirements, are bundled in a

container called Test Module. This allows you to design and organize your tests in a

modularized fashion. The end goal is an efficient and maintainable KDT framework.

The illustration below describes the relations among Test Module, Action and Interface

Entity concepts.

window control row Cell

Get table cell value review flight summary table 3 2

https://www.testarchitect.com/

LogiGear Whitepaper

www.testarchitect.com

As you might notice, the inside content of an action is exposed in the spreadsheet format

(e.g. login action). This helps business testers instruct the test tool on how to interact with the

app-under-test themselves by calling other user-defined or pre-coded keywords (Recursive

Keyword Combination).

Example test case in Action-Based Testing

Back to our flight booking example, you can expect the test rewritten in Action-Based

Testing Language as below.

https://www.testarchitect.com/

LogiGear Whitepaper

www.testarchitect.com

Advantages of Action-Based Testing

Besides the benefits of Verb-based Keyword and Recursive Keyword Combination we pre-

viously discussed, rewriting the test in ABT brings several more advantages:

https://www.testarchitect.com/

LogiGear Whitepaper

www.testarchitect.com

Methodology should be embedded in a product

Up to now, we’ve seen the solutions for Direct Keyword-Code Mapping and Noun-based

Keyword problems. But, we haven’t discussed the solution for the coding requisite, which

exists in both in-house KDT frameworks and many off-the-shelf KDT solutions on the market.

We believe solving this problem requires more of a product solution than a methodology

solution. To eliminate unnecessary coding and accelerate test development, we need a

pre-coded keyword library.

TestArchitect™ is the test automation framework embracing Action-Based Testing. It’s

shipped with features specifically designed to embody and empower ABT’s ideology. One

ought to agree that great ideas should be accompanied by a great product to actually

close the gap between theory and practice.

To better understand the values which TestArchitectTM can bring to the table, let’s explore

several kinds of Actions in TestArchitectTM.

Built-in Actions: These are previously coded keywords. TestArchitectTM offers an out-of-the-

box action library (386 actions and counting) which cover most of day-to-day needs such

as GUI interaction, API, database, image-based, etc. These actions were purposefully de-

signed to be used right away without any further coding required.

User-defined Actions: Since the contents of actions are exposed in the spreadsheet format,

testers are free to combine built-in or existing user-defined actions to create new user de-

fined actions recursively (Recursive Keyword Combination).

Scripted Actions: When necessary, any team member with some coding background can

implement actions in a programming language of choice (C#, Java or Python).

The biggest advantage of TestArchitectTM comes from Codeless-ness. As you probably no-

tice, a pre-coded action library is out-of-the-box so we mostly don’t have to code. More

importantly, those keywords are platform-agnostic: a click is just a click no matter if its target

is an HTML5 element, an Android / iOS native control, WPF button or Java checkbox.

https://www.testarchitect.com/
https://www.testarchitect.com/

LogiGear Whitepaper

www.testarchitect.com

Codeless-ness is desirable because it enables us to flexibly leverage smaller programming

staff to support a much larger non-programming staff. This delivery model can churn out

more tests in less time because our team members can all work in parallel.

The combo of Action-Based Testing & TestArchitectTM

We have seen how Action-Based Testing along with TestArchitectTM inherit the KDT legacies

we already know and love, such as reusability, maintainability and division of labor. Let’s

take a look at the how this combo would resolve other shortcomings of old-school KDT

frameworks. We’re also interested in tackling the large-scale challenges when our project

grows.

https://www.testarchitect.com/

LogiGear Whitepaper

www.testarchitect.com

https://www.testarchitect.com/

LogiGear Whitepaper

www.testarchitect.com

Conclusion

As you may have realized, Keyword-Driven Testing beats the early-days test automation

technique significantly. But modern test automation needs (i.e. Agile) stretch the old-school

KDT frameworks past their limits. New challenges expose certain shortcomings of the old-

school KDT frameworks. Most significantly, the biggest shortcomings are Noun-based Key-

word and Direct Keyword-Code Mapping. Their consequences are so severe that we need

to step back and rethink our approaches. Verb-based Keyword and Recursive Keyword

Combination have emerged as the better alternatives for those shortcomings of old-school

KDT frameworks.

Action-Based TestingTM incorporates those great ideas into one methodology. It offers a

modern approach to the Keyword-Driven Testing ideology which we all know and love.

Along with the TestArchitectTM framework, ABT establishes an empowering platform to close

the gap between theory and practice. With proper adoption, you can expect true Test

Quality at Speed.

For more information on how to leverage TestArchitectTM as an automation solution, please

visit www.testarchitect.com for a free download. For a more in-depth guide on how you

may adopt TestArchitectTM and ABT, check out the TestArchitect Implementation Guide.

ABOUT LOGIGEAR
LogiGear is a boutique software testing company and the developer of TestArchitectTM. With a

codeless approach, TestArchitectTM helps improve automated testing in Agile development by

enabling early test development, reducing the time to create and maintain reliable test

automation. With more than two decades of serving software businesses and software testing

community, LogiGear also offers outsourced software testing services, as well as QA transformation

consulting and on-site training to help achieve the most ambitious business goals. To learn more

visit www.logigear.com

https://www.testarchitect.com/
https://www.testarchitect.com/
https://www.testarchitect.com/free-download
https://www.testarchitect.com/data/documents/datasheets/Leverage_Test_Automation_effectively.pdf
https://www.logigear.com/magazine

