SI Base Units

Quantity	Name	Abbreviation
length	metre	m
mass	kilogram	kg
time	second	S
amount of substance	mole	mol
temperature	Kelvin	K
electric current	ampere	A
luminous intensity	candela	cd

SI Prefixes

Factor	Prefix	Abbreviation	Relationship
10^{18}	exa	E	$1 \times 10^{18} units = 1 Eunit$
10 ¹⁵	peta	P	$1 \times 10^{15} $ units = 1 Punit
10 ¹²	tera	T	$1 \times 10^{12} units = 1 Tunit$
109	giga	G	1×10^9 units = 1 Gunit
10^6	mega	M	1×10^6 units = 1 Munit
10 ³	kilo	k	1,000 units = 1 kunit
10^{2}	hecto	h	$100 \ units = 1 \ hunit$
10 ¹	deka	da	$10 \ units = 1 \ daunit$
10^{0}	unit		1 unit = 1 unit
10 ⁻¹	deci	d	$1 \ unit = 10 \ dunits$
10 ⁻²	centi	c	1 <i>unit</i> = 100 <i>cunits</i>
10 ⁻³	milli	m	1 <i>unit</i> = 1,000 m <i>units</i>
10 ⁻⁶	micro	μ	1 $unit = 10^6 \mu units$
10 ⁻⁹	nano	n	1 $unit = 10^9$ nunits
10 ⁻¹²	pico	p	1 $unit = 10^{12} punits$
10 ⁻¹⁵	femto	f	1 $unit = 10^{15}$ funits
10 ⁻¹⁸	atto	a	1 $unit = 10^{24}$ aunits

Note: The items in bold print are the ones you will use most in this class.

The following are worked examples using the Factor-Label Method:

- 1. How many grams of vitamin C are in a 1500 mg tablet?
 - a. Start from the number you are given. (1500 g)
 - b. Write a fraction with the units you wish to divide out (mg in this case) on the bottom and the base units the ones without a prefix (grams) on the top.
 - c. Which units are bigger? (grams) Put a big 1 next to them. (1 g)
 - d. How many of the smaller units does it take to make one of the bigger? (1000 mg make 1 gram) Put this number next to the smaller units.

$$(1500 \, \text{mg}) \cdot \left(\frac{1g}{1000 \, \text{mg}}\right) = 1.5g$$

2. Sparky the Wonder Dog has a mass of 0.629 kg. What is Sparky's mass in centigrams?

$$0.629 \log \cdot \left(\frac{1000 \log}{\log 1}\right) \cdot \left(\frac{100 \log}{\log}\right) = 62900 \log$$

3. The LAPD has 283 μ L sample of blood for processing at the serology lab. How many millilitres of blood is this?

$$(283 \text{pL}) \cdot \left(\frac{\text{NL}}{1000000 \text{pL}}\right) \cdot \left(\frac{1000 \text{ mL}}{\text{NL}}\right) = 0.238 \text{mL}$$

4. Mr. Spears needs to set aside 5 litres of water per person at Bravo. There are 2,000 people at Bravo (students and staff). How many kilolitres of water does Mr. Spears need to have on hand for an emergency?

5. The average locker at Bravo has approximately 48,000 cm³ of storage volume. How many cubic metres is this?

$$\left(48,000\text{cm}^3\right)\cdot\left(\frac{1\text{m}}{100\text{cm}}\right)\cdot\left(\frac{1\text{m}}{100\text{cm}}\right)\cdot\left(\frac{1\text{m}}{100\text{cm}}\right)=0.048\text{m}^3$$