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Abstract—As machine learning models are increasingly de-
ployed in critical decision-making systems, verifying the integrity
of the training process without compromising data privacy
has become a significant challenge. While recent frameworks
for Zero-Knowledge Proofs of Training (zkPoT), such as those
by Garg et al., demonstrate feasibility, they often rely on
heavy cryptographic machinery that creates barriers to practical
implementation and understanding. This project bridges that
gap by presenting a lightweight, reproducible prototype for
verifiable training using the Circom language and the Groth16
proving system. We move beyond simple single-step verifications
to implement Mini-Batch Gradient Descent, demonstrating how
data-parallelism can be achieved in a zero-knowledge circuit.
Additionally, we extend this work to a Multi-Layer Perceptron
(MLP) with ReL U activation, proving the correctness of inference
and weight updates on secret data. We address the technical
challenges of implementing fixed-point arithmetic and stateful
loops within Rank-1 Constraint Systems (R1CS). Finally, we
provide an experimental evaluation of scalability, benchmarking
the relationship between batch size, circuit constraints, and proof
generation time, confirming that verifiable training is tractable
for small-scale batches on consumer hardware.

Index Terms—zero-knowledge, proofs-of-training, zkSNARKSs,
circuit, neural networks, regression

I. INTRODUCTION

A. Motivation

As machine learning (ML) models are increasingly de-
ployed in critical decision-making systems — ranging from
financial credit scoring to medical diagnosis — ensuring the
integrity of the training process has become paramount [1].
In traditional setups, the model training process is a “black
box”: users must blindly trust that the model was trained using
the claimed algorithms and datasets. However, revealing the
training data to third-party auditors to verify this process is
often impossible due to strict data privacy regulations (e.g.,
GDPR, HIPAA) or the proprietary nature of the dataset [2].

This creates a fundamental tension between verifiability and
privacy. Zero-Knowledge Proofs (ZKPs) offer a cryptographic
solution to this dilemma, allowing a prover to demonstrate that
a computation (in this case, model training) was performed
correctly on secret inputs without revealing the inputs them-
selves.
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FIXED-POINT ARITHMETIC SCALING

0.5 (Float)

Multiply by Scale (10%)

500,000 (Integer)
500,000 x 500,000 = 250,000,000,000 Result: 250,000

Divide by Scale (10¢)

Fig. 1: Fixed-Point Arithmetic Scaling Scheme. To handle
floating-point precision within the finite field IF,,, all values are
scaled by a factor S = 105. Multiplication operations (A x B)
result in a scaling factor of S2, necessitating an immediate di-
vision by S to return the result to the correct magnitude range,
preventing overflow and maintaining numerical stability.

B. Problem Statement

While the theoretical foundations for Zero-Knowledge Ma-
chine Learning (ZKML) are being established, practical imple-
mentation remains a significant challenge. Recent frameworks
for “Zero-Knowledge Proofs of Training” (zkPoT), such as the
work by Garg et al., demonstrate that it is possible to prove
statements like “this model was trained on this dataset using
this algorithm” [1].

However, existing systems often rely on “heavy crypto-
graphic machinery” and complex, custom-built proving sys-
tems that are difficult to reproduce or modify for instruc-
tional purposes [1]. There is a lack of lightweight, accessi-
ble implementations that demonstrate the core primitives of
verifiable training — such as gradient aggregation and non-
linear activation — using standard, general-purpose circuit
languages. Furthermore, scaling these proofs to handle batches
of data, rather than single data points, introduces significant
complexity in circuit design and constraint management [2].

C. Objectives

The primary objective of this project is to implement
a transparent, “bottom-up” prototype for verifiable training.



Rather than relying on automated transpilers that obscure the
underlying logic, we aim to manually design arithmetic circuits
that encode the mathematical operations of machine learning.
Specifically, this project focuses on:

o Implementing a Mini-Batch Gradient Descent mecha-
nism to demonstrate data-parallelism in a zero-knowledge
setting.

o Extending the verification logic to non-linear models,
specifically a Multi-Layer Perceptron (MLP) with
ReLU activation.

« Benchmarking the scalability of the system to understand
the relationship between batch size and proof generation
time.

D. Contributions

This report presents a concrete implementation of zkPoT
using the Circom language and the Grothl16 proving system.
Our key contributions are as follows:

1) Batch Processing Circuitry: We improved upon simple
single-step demonstrations by designing a stateful circuit
capable of ingesting a batch of N secret data points,
calculating the aggregate gradient, and updating model
weights. This addresses the practical need for processing
multiple samples in a single proof.

2) Manual Arithmetic Encoding: We developed a fixed-
point arithmetic system to handle floating-point oper-
ations within the finite field of the SNARK, ensuring
precision without the overhead of heavy emulation.

3) Scalability Analysis: We provided an experimental
evaluation of the system, benchmarking the linear
growth of constraints relative to batch size. Our results
quantify the computational cost of privacy-preserving
training for simple models.

II. METHODOLOGY

The methodology employed in this study centers on the
translation of classical machine learning optimization algo-
rithms into arithmetic circuits compatible with the Rank-1
Constraint System (R1CS) standard. The system architecture
is built upon a two-phase workflow: an offline computational
phase and an on-chain verification phase. In the offline phase,
a trusted execution environment (typically a local Python
script) computes the “witness,” which comprises the com-
plete set of intermediate values — inputs, weights, gradients,
and activations — generated during the training process. This
witness generation step is critical as it handles the raw
floating-point calculations required to determine the valid
state transitions. The subsequent verification phase utilizes the
Circom 2.0 compiler to define the constraints and the SnarkJS
library to generate a Zero-Knowledge Proof (ZKP) using the
Groth16 proving system. This proof cryptographically attests
that the state transition from initial parameters ; to updated
parameters 6,1 adheres strictly to the prescribed training
algorithm without revealing the underlying training dataset
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Fig. 2: System Architecture Overview. The workflow con-
nects the trusted offline computation (Python) with the Zero-
Knowledge proving backend. The witness is generated from
raw data and passed to the Circom-compiled circuit (Prover),
which generates a cryptographic proof (w). This proof is
subsequently verified against public inputs (wy,:) Wwithout
revealing the private training data.

A fundamental challenge addressed in this implementation
is the incompatibility between the floating-point arithmetic
standard (IEEE 754) used in machine learning and the finite
field arithmetic IF, required by zk-SNARKs. To bridge this
gap, we implemented a fixed-point arithmetic system where
all real-valued numbers are mapped to the finite field via a
scaling factor S = 10%. Under this scheme, a real value v € R
is represented as an integer v’ = |v - S| € F,,. This transfor-
mation necessitates careful handling of arithmetic operations
within the circuit to maintain precision. Specifically, addition
and subtraction are performed directly on the scaled values,
as S(a+0b) = Sa+ Sb. However, multiplication introduces a
scaling overhead, as (Sa)-(Sb) = S2%(ab). To correct this, our
circuit enforces a division constraint immediately following
every multiplication to revert the scale, formally represented
by the constraint z - S = x - y, where z is the expected scaled
result. This ensures that the magnitude of the values remains
within the representable range of the field throughout the deep
learning layers.

The core algorithmic contribution of this work is the imple-
mentation of Mini-Batch Gradient Descent within a stateful
circuit. We define the objective function as the Mean Squared
Error (MSE) loss, J(w,b) = + Zi[il(yi — (wz; + b))2. To
verify the training step, the circuit must prove the computation
of the partial derivatives with respect to the weights and bias.
For a batch size IV, the aggregated gradient for the weight w
is calculated within a loop structure according to the equation:

N
Vo=~ 3~ (wmi ) n

In our RICS implementation, this summation is achieved
via an accumulator signal that iteratively adds the gradi-
ent contribution of each private input (z;,y;). Unlike naive
approaches that might attempt to verify the final average



directly, our circuit constrains every intermediate addition
step. The final weight update rule, Wypew = Woig — N - VW,
is then applied, where n represents the learning rate. By
aggregating the gradients inside the ZK circuit, we achieve
data-parallelism, allowing the proof to attest to the correctness
of an update derived from a hidden batch of data rather than
a single predictable point, significantly enhancing the privacy
guarantees compared to prior single-step demonstrations [1].

To extend the methodology to non-linear function approx-
imation, we developed a circuit for a Multi-Layer Perceptron
(MLP) containing a hidden layer with Rectified Linear Unit
(ReLU) activation. A significant constraint in RICS design
is the prohibition of quadratic constraints involving more than
one multiplication in a single linear combination. Standard ma-
trix multiplication, which computes the dot product ) w;;z;,
violates this rule if summed directly in a single constraint.
We resolved this by decomposing the dense layer opera-
tion into two distinct stages: an element-wise multiplication
stage and a subsequent accumulation stage. The non-linearity
is introduced via the ReLU activation function, defined as
f(z) = max(0, z). Since conditional logic (branching) is not
natively supported in arithmetic circuits, we utilized a com-
parator gadget from the circomlib library. This component
generates a binary output bit b € {0,1} such that b = 1
if x > 0 and b = 0 otherwise. The ReLU output is then
constrained algebraically as y = =z - b, effectively zeroing
out negative values while passing positive values unchanged.
This approach allows us to verify complex, non-linear model
architectures while maintaining the zero-knowledge property
that the internal neuron activations remain secret [2].

III. IMPLEMENTATION

The practical realization of the proposed Zero-Knowledge
Proof system was achieved using a hybrid technology stack
comprising Circom 2.0 for circuit definition, SnarkJS for
cryptographic backend operations, and Python for witness
generation and data orchestration. The core development en-
vironment relied on the Groth16 proving system, selected for
its constant proof size and rapid verification time, which are
critical attributes for the scalability goals of this project. The
implementation strategy prioritized the manual encoding of
arithmetic constraints to ensure transparency and to avoid the
overhead associated with high-level transpilers.

The foundational component of the implementation is the
handling of numerical precision within the finite field F,, of
the BN128 elliptic curve. Since the Circom compiler natively
supports only modular arithmetic, we engineered a fixed-point
arithmetic utility within the circuit. We defined a global scaling
constant S = 108, For every multiplication operation involving
two scaled variables x and y, the circuit enforces a constraint
of the form z - S = x -y, where z is the result. This required
the implementation of a rigorous witness generation script
in Python that mirrors this logic exactly. The Python script
performs integer division (floor rounding) to pre-calculate the
expected values for the witness file. Any discrepancy between
the Python pre-calculation and the circuit’s internal modular
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Fig. 3: Mini-Batch Gradient Descent Circuit Logic. A
schematic representation of the stateful loop implemented in
the BatchGradientDescent template. The circuit iterates
through N private data points, calculating individual gradients
and aggregating them into a running sum accumulator. The
final weight update is derived from the averaged gradient,
demonstrating data-parallelism within a single R1CS proof.

arithmetic results in a failure to generate a valid witness,
thereby ensuring that the proof acts as a strict verifier of the
underlying numerical computation.

The BatchGradientDescent circuit was implemented
as a parameterized template, allowing the batch size N to
be defined at compile time. A significant implementation
challenge was the management of state within the Rank-
1 Constraint System (R1CS). Since signals in RICS are
immutable once assigned, we utilized an array-based accu-
mulation strategy to implement the summation Zfil VL,.
We declared intermediate signal arrays to store the partial
sums of the gradients at each step of the iteration. The
circuit iterates through the batch using a compile-time loop,
calculating the gradient for the i-th data point using the
difference between the prediction y,,..q = wx; + b and the
true label y;. These individual gradients are then aggregated
into the final accumulators. The weight update step involves
the application of the learning rate 7, which is also scaled
by S. To prevent overflow and ensure valid constraints, the
update logic Wyew = Worg — N - % > Vw is decomposed into
a sequence of elementary additions and scaled multiplications,
each constrained individually.

For the Multi-Layer Perceptron (MLP) implementation, we
addressed the specific limitations of R1CS regarding non-
linear constraints. The standard definition of a dense layer
neuron, y = o(>_ w;z; + b), involves a sum of products.
Attempting to express this sum directly results in a “Quadratic
Constraint” error during compilation, as R1CS allows only
one multiplication per linear combination. We resolved this
by implementing a DenseLayer template that explicitly
separates the operation into two distinct phases. First, an
array of intermediate signals holds the result of each pairwise
multiplication w; - z;. Second, a separate loop accumulates
these signals into a final sum. This modular approach allows
the compiler to generate a valid constraint system for arbitrary



layer sizes. The ReLU activation function was implemented
by integrating the GreaterEgqThan component from the
circomlib library. This component performs a bit-wise
decomposition of the input signal to verify its sign, outputting
a binary signal that acts as a gate for the neuron’s output.
Finally, the entire pipeline is automated via a set of shell
scripts that link the Python data generation with the Circom
proving engine. The workflow begins with the execution of
the Python script to randomize initial weights and gener-
ate the input.json file containing the batch data. The
snarkjs library then utilizes the compiled WebAssembly
(WASM) binary to calculate the witness, followed by the
execution of the Grothl6 trusted setup and proof generation.
This tight integration ensures reproducibility, allowing for
the rapid benchmarking of different batch sizes and network
architectures as documented in the evaluation section [1], [2].

IV. PERFORMANCE EVALUATION

To assess the practical feasibility of the proposed Zero-
Knowledge Proof (ZKP) system, we conducted a series of
benchmarks focusing on two key metrics: Circuit Complexity,
measured by the number of R1CS constraints, and Computa-
tional Latency, measured by the time required to generate a
valid proof. All experiments were conducted on a consumer-
grade workstation, utilizing Circom 2.0 for compilation and
SnarkJS (Groth16) for the proving backend. The results vali-
date the scalability of our manual arithmetic implementations
for both the Mini-Batch Gradient Descent and the Multi-Layer
Perceptron (MLP).

A. Scalability of Batch Gradient Descent

The first set of experiments evaluated the
BatchGradientDescent circuit by varying the batch size
N € {4,8,16,32}. As illustrated in Figure 1, the relationship
between batch size and circuit complexity (represented by the
red dashed line) is strictly linear. Specifically, the constraint
count grows from approximately 10 constraints at NV = 4 to
over 60 constraints at N = 32. This linearity confirms that
our loop-based accumulation logic efficiently scales with data
volume without introducing exponential overhead.

The proving time (blue solid line) exhibits an initialization
overhead at the smallest batch size (N = 4), registering ap-
proximately 0.28s. This latency drops significantly to 0.26s at
N = 8 before beginning a gradual linear ascent as N increases
to 16 and 32. This behavior suggests that for very small
batches, the fixed system overhead (loading the WASM binary
and witness generation keys) dominates the execution time. As
the batch size increases, the actual cryptographic computation
becomes the primary factor, resulting in a predictable and
manageable increase in proving time.

B. Scalability of Multi-Layer Perceptron (MLP)

The second evaluation focused on the MLP circuit, specif-
ically measuring the impact of increasing the width of the
hidden layer (number of neurons H € {4, 8, 16, 32}). Figure 2
presents these results. Similar to the gradient experiment, the
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Fig. 4: Performance scaling of Batch Gradient Descent. The
number of constraints (Right Axis, Red) grows linearly with
batch size, while proving time (Left Axis, Blue) stabilizes after
initial system overhead.

circuit constraints (green dashed line) demonstrate a perfect
linear correlation with the model size, rising from roughly
200 constraints for 4 neurons to over 1300 constraints for 32
neurons. This confirms that our modular DenselLayer and
ReLU components essentially “stack™ cost-effectively.

The proving time (purple solid line) mirrors the trend seen
in the gradient experiment: a high initial latency (> 0.31s) for
the smallest model, followed by a sharp drop and a subsequent
linear increase. The proving time for the largest tested model
(32 hidden neurons) remains under 0.33s, demonstrating that
verifying inference for small neural networks is computation-
ally inexpensive and feasible for real-time applications.

ZK MLP Scalability: Impact of Model Size
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Fig. 5: Performance scaling of the MLP Circuit. As the
hidden layer size increases, the circuit constraints (Right
Axis, Green) scale linearly. Proving time (Left Axis, Purple)
remains efficient, staying under 0.35s even for the largest
tested configuration.

C. Summary of Results

Table 1 summarizes the constraint growth for both architec-
tures. The data confirms that our manual circuit optimization



successfully maintained a linear growth profile. The “overhead
spike” observed in the timing data for the smallest inputs
(N = 4) indicates that future optimizations should focus
on reducing the fixed startup costs of the witness generation
pipeline, rather than just optimizing the constraints themselves.

V. CHALLENGES AND LIMITATIONS

While this project successfully demonstrates the feasibility
of verifying Mini-Batch Gradient Descent and MLP inference
using Zero-Knowledge Proofs, several significant technical
challenges and inherent limitations remain. These constraints
primarily stem from the fundamental differences between the
algebraic structure of zk-SNARKSs (finite fields) and the math-
ematical requirements of modern machine learning (floating-
point calculus).

A. Fixed-Point Arithmetic and Numerical Precision

The most immediate challenge in implementing Zero-
Knowledge Machine Learning (ZKML) is the loss of precision
inherent in fixed-point arithmetic. Standard deep learning
frameworks utilize 32-bit or 64-bit floating-point numbers
(IEEE 754) to capture the vast dynamic range of gradients,
which can vary from very large values to infinitesimal numbers
during training. Our implementation utilizes a static scaling
factor S = 10° to map these values to the finite field F,.

This approach introduces two critical limitations. First,
Vanishing Gradients: if a calculated gradient drops below
the resolution of 1075, it is effectively rounded to zero in
the integer domain, potentially stalling the training process.
Second, Overflow Risk: while the field size of the BN128
curve is large (= 254 bits), repeated multiplications without
immediate rescaling can exceed the field modulus, resulting in
wrap-around errors that invalidate the proof. While our circuit
enforces rescaling after every multiplication, this adds substan-
tial constraint overhead (= 2NN constraints per multiplication)
compared to native arithmetic operations.

B. Non-Linearity and Activation Costs

In classical computing, non-linear activation functions like
ReLU, Sigmoid, or Tanh are trivial operations. In an Arith-
metic Circuit, they are disproportionately expensive. A simple
addition costs 0 constraints in Grothl16 (it is linear), but a
ReLU operation requires bit-wise decomposition to verify the
sign of a number.

As demonstrated in our MLP implementation, a single ReLU
activation necessitates a comparator gadget that generates
constraints proportional to the bit-width of the signal (e.g.,
32 or 64 constraints per neuron). This “Non-Linearity Tax”
means that while linear layers scale relatively well, increasing
the depth of the network with many activation layers causes
the circuit size to explode. Implementing smoother activations
like Sigmoid or Softmax is even more challenging, often
requiring expensive Taylor Series approximations or lookup
tables, which were outside the scope of this efficient prototype.

C. Scalability and Prover Overhead

Although our performance evaluation demonstrates linear
scaling for small batches, the absolute computational cost of
generating proofs remains a barrier for large-scale deployment.
The Groth16 proving system requires a “Trusted Setup” phase
that is specific to the circuit. Any change to the model architec-
ture (e.g., adding a layer or changing the batch size) requires
generating a new proving key. Furthermore, while proving time
for a batch of 32 was under 0.3 seconds, extrapolating this to a
standard deep learning workload — such as training a ResNet-
50 on ImageNet with millions of parameters — would result in
massive memory consumption and proving times measured in
hours or days, rendering it impractical for real-time training
verification on consumer hardware.

D. Data Provenance vs. Computation Verification

Finally, it is crucial to distinguish between verifying compu-
tation and verifying data origin. Our system cryptographically
proves that “Given a set of data X, the model update was
calculated correctly.” However, it does not prove that X is
a representative or unbiased sample of the real-world distri-
bution. A malicious actor could technically generate a valid
proof for a model trained on poisoned or biased data, provided
they truthfully used that bad data in the circuit. Solving
this “Garbage In, Verified Garbage Out” problem requires
integrating digital signatures or hardware-based attestations
(like Intel SGX) at the data collection source, which remains
an open research direction in the field of ZKML.

VI. CONCLUSION AND FUTURE WORK
A. Conclusion

This project has successfully demonstrated the practical
viability of “Zero-Knowledge Proofs of Training” (zkPoT)
for simple machine learning models, moving beyond the-
oretical abstractions to a concrete, manual implementation.
By engineering a Mini-Batch Gradient Descent circuit in
Circom, we have shown that data-parallelism — a cornerstone
of modern Al training — can be effectively encoded within the
rigid constraints of a Rank-1 Constraint System (R1CS). Our
implementation addresses the critical gap identified in recent
literature: the lack of lightweight, pedagogical prototypes
that expose the low-level arithmetic primitives required for
verifiable machine learning.

Through rigorous benchmarking, we established that the cir-
cuit complexity for both the gradient descent and Multi-Layer
Perceptron (MLP) architectures scales linearly with input size.
This linear relationship (O(N)) confirms that the manual op-
timization strategies employed, particularly the decomposition
of matrix operations and the use of stateful accumulators,
yield a highly efficient proof generation process for small-
scale batches. Furthermore, our successful integration of fixed-
point arithmetic proves that the precision loss inherent in finite
field operations can be managed deterministically, ensuring
that the cryptographic proof accurately reflects the underly-
ing mathematical convergence of the model. Ultimately, this
work serves as a foundational proof-of-concept, illustrating



TABLE I. CONSTRAINT GROWTH VS. INPUT SIZE

Parameter (N / Neurons) Gradient Constraints MLP Constraints

4 10 220
8 18 390
16 34 710
32 66 1350

that privacy-preserving model verification is attainable on
consumer hardware without reliance on opaque, “black-box”
transpilers.

B. Future Work

While this prototype validates the core concepts of zkPoT,
scaling this system to deep learning architectures will require
significant architectural evolution. Future research should fo-
cus on three key areas:

Recursive Proof Composition: The current reliance on
Groth16 necessitates a large, monolithic circuit that grows
with the number of training steps. To verify an entire training
epoch consisting of thousands of iterations, future work should
adopt Recursive SNARKSs (such as Halo2 or Nova). In this
paradigm, a proof 7; verifies the correctness of step ¢ and
verifies the validity of the previous proof m;_;. This would
allow for the verification of arbitrarily long training sequences
with a constant-sized circuit, directly addressing the memory
bottlenecks identified in our scalability analysis [1].

Backpropagation for Deep Networks: Our current MLP
implementation verifies the inference pass (forward propa-
gation). A natural extension is to implement the backward
pass (backpropagation) within the circuit. This would involve
calculating partial derivatives for the non-linear ReLLU layers
and propagating error terms back to update the hidden weights,
enabling the full verification of neural network training rather
than just linear regression.

Hardware Acceleration: To combat the “Non-Linearity
Tax” associated with activation functions, future implemen-
tations could leverage hardware-accelerated proving systems
(using GPUs or FPGAs) optimized for the specific finite field
arithmetic of the BN128 or BLS12-381 curves. This would
significantly reduce the proving time latency observed in our
benchmarks, moving the system closer to real-time verification
capabilities.
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