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Abstract

Automated radiology report generation from 3D chest CT
volumes remains challenging due to computational com-
plexity and the need for clinically accurate narratives. We
present VolumeVision, a novel framework that combines in-
telligent slice selection with MedGemma 4B for efficient 3D
CT report generation. Our approach uses a learned slice
selector to identify the most diagnostically relevant views
from axial, coronal, and sagittal planes, followed by cross-
modal fusion with a medical vision-language model. Ex-
periments on a curated subset of 5,000 C T-RATE studies
demonstrate that VolumeVision achieves superior perfor-
mance compared to existing methods while requiring sig-
nificantly fewer computational resources. Our hierarchical
2.5D approach offers a practical solution for automated ra-
diology reporting in clinical settings.

1. Introduction

Chest computed tomography (CT) serves as the cornerstone
of thoracic disease diagnosis, yet the manual generation
of comprehensive radiology reports represents a significant
bottleneck in clinical workflows. With radiologists process-
ing hundreds of CT volumes daily, each containing 200-
400 slices, the cognitive burden and time requirements for
accurate report generation have reached critical levels, con-
tributing to diagnostic delays and physician burnout affect-
ing 45% of practicing radiologists [12]. While recent ad-
vances in 2D medical image analysis have demonstrated
remarkable progress, the transition to 3D volumetric data
introduces formidable computational challenges that funda-
mentally limit scalability.

The computational complexity of processing 3D medical
volumes stems from the quadratic scaling of transformer at-
tention mechanisms with sequence length, where a typical
chest CT volume requires processing over 14.3 million vox-
els [10]. Recent pioneering efforts such as CT2Rep [11]
and 3D-CT-GPT [2] have explored causal 3D transformers

for volumetric report generation, achieving promising clin-
ical accuracy. However, these approaches demand substan-
tial computational resources with O(N2-D) attention com-
plexity [25], making them impractical for routine clini-
cal deployment. Concurrently, the emergence of medical
vision-language models, particularly MedGemma 4B [7],
has demonstrated exceptional capabilities in multimodal
medical understanding, yet their application to 3D imaging
remains largely unexplored due to their inherent 2D input
constraints.

We propose VolumeVision, a novel framework that
strategically bridges this gap by combining learned slice
selection with state-of-the-art medical VLMs for efficient
3D CT report generation. Our fundamental insight chal-
lenges the conventional assumption that all slices contribute
equally to diagnostic understanding. Instead, we demon-
strate that intelligently selected representative views from
multiple anatomical planes can preserve clinical fidelity
while achieving dramatic computational efficiency gains.
By leveraging cross-planar attention mechanisms and the
robust medical knowledge embedded in MedGemma 4B,
VolumeVision transforms the prohibitive 3D problem into
a tractable 2.5D representation learning task.

Contributions:

¢ We introduce VolumeVision, the first framework to unite
learned slice selection with MedGemma 4B for scal-
able 3D CT report generation, demonstrating that medi-
cal VLMs can effectively handle volumetric data through
strategic dimensionality reduction

* We develop a novel cross-planar gated attention mech-
anism that intelligently fuses information from axial,
coronal, and sagittal views, capturing comprehensive
3D anatomical relationships while maintaining computa-
tional efficiency

* We achieve state-of-the-art performance on CT-RATE
subset with 60% fewer visual tokens than existing meth-
ods, establishing a new paradigm for resource-efficient
3D medical imaging that enables practical clinical de-
ployment



2. Related Work

Medical Report Generation. The evolution of automated
radiology report generation has progressed through several
distinct phases, each addressing fundamental challenges in
medical image understanding and natural language genera-
tion. Early pioneering work established CNN-RNN archi-
tectures for chest X-ray analysis [14], laying the foundation
for image-to-text generation in medical domains. These ini-
tial approaches, while groundbreaking, were limited to 2D
imaging modalities and struggled with the linguistic com-
plexity of clinical narratives.

Recent transformer-based innovations have dramatically
advanced the field through sophisticated attention mecha-
nisms and memory-driven architectures. Chen et al. [4]
introduced memory-driven transformers that leverage rela-
tional memory to capture key information across generation
steps, achieving state-of-the-art performance on MIMIC-
CXR. Wang et al. [29] proposed pure transformer-based
frameworks with multicriteria supervision, incorporating
visual-textual alignment and multi-label diagnostic classi-
fication to address fine-grained medical image differences.
Cross-modal contrastive approaches [17] have emerged to
tackle data bias issues by exploiting visual and semantic
information from similar historical cases, significantly im-
proving abnormal finding detection.

The transition to 3D volumetric data represents the cur-
rent frontier, with CT2Rep [11] pioneering automated re-
port generation for chest CT volumes using causal 3D trans-
formers. Building upon this foundation, recent work has ex-
plored abnormality-guided generation [9] and hierarchical
3D-to-text approaches [32]. BrainGPT [15] demonstrated
the feasibility of 3D brain CT report generation through
clinically visual instruction-tuned models, achieving 74%
indistinguishability from human-written reports in Turing-
like evaluations. Most recently, MS-VLM [27] introduced
radiologist-workflow-inspired slice-level processing, show-
ing that sequential slice analysis with inter-slice depen-
dency modeling can surpass existing 3D approaches while
maintaining computational efficiency.

Medical Vision-Language Models. The landscape of
medical VLMs has undergone rapid transformation with the
advent of large-scale multimodal foundation models specif-
ically adapted for healthcare applications. Early medical
adaptations of general VLMs, such as LLaVA-Med [16],
demonstrated the potential of instruction tuning for medical
visual question answering but suffered from hallucination
issues and limited clinical grounding.

The introduction of domain-specific medical VLMs has
marked a paradigm shift toward clinically robust multi-
modal understanding. MedGemma 4B [7] represents a
breakthrough in medical multimodal modeling, featuring a
SigLIP vision encoder specifically pre-trained on diverse
de-identified medical data including chest X-rays, derma-

tology images, ophthalmology images, and histopathology
slides. Its performance across medical benchmarks (88.9
F1 on MIMIC-CXR, 71.8% accuracy on DermMCQA) es-
tablishes new standards for medical image comprehension.
Dr-LLaVA [1] advanced clinical reasoning through sym-
bolic clinical grounding, eliminating hallucinations through
GPT-4-guided visual instruction tuning and automatic re-
ward functions for clinical validity assessment.

Recent developments have focused on specialized med-
ical domains and improved efficiency. BioGPT [19] es-
tablished generative capabilities for biomedical text with
81.0% accuracy on PubMedQA, while MedM-VL [24]
achieved state-of-the-art performance across multiple med-
ical tasks through careful architectural design combining
SigLIP encoders with medical-specific training. The emer-
gence of heterogeneous adaptation techniques, exemplified
by HealthGPT [30], demonstrates the potential for unified
medical comprehension and generation through novel H-
LoRA approaches and hierarchical visual perception.

Efficient 3D Processing. The computational challenges
of 3D medical imaging have driven substantial innovation
in efficient volumetric processing techniques. Traditional
approaches focused on architectural optimizations, with tri-
planar networks [3] enabling 2D pre-trained feature uti-
lization across orthogonal planes, and anisotropic convo-
lutions [28] addressing the inherent asymmetry in medical
volumes. Sparse attention mechanisms [5] provided early
solutions to the quadratic scaling problem in transformer
architectures, enabling longer sequence processing with re-
duced computational overhead.

Recent advances have emphasized learned representa-
tions and intelligent data reduction strategies. The M3T
framework [23] demonstrated the effectiveness of multi-
plane and multi-slice transformers for 3D medical im-
age classification, synergistically combining 3D CNNs, 2D
CNNs, and transformers to capture both local abnormal-
ities and long-range relationships in brain MRI analysis.
Attention-gated networks [26] introduced automatic salient
region focusing, enabling models to suppress irrelevant re-
gions while highlighting diagnostically relevant features
with minimal computational overhead.

Advanced slice selection strategies have emerged as a
particularly promising direction for 3D efficiency. Recent
systematic studies [20] revealed that strategic slice selec-
tion can significantly outperform uniform sampling, with
learned selection approaches achieving superior perfor-
mance compared to random or fixed-interval strategies. The
integration of reinforcement learning objectives for slice
importance prediction, as demonstrated in various medical
segmentation tasks [21], has shown the potential for end-
to-end optimization of slice selection policies. Multi-view
transformer approaches [6] have established the effective-
ness of cross-view communication in 3D understanding,



with global receptive fields naturally enabling information
flow between different anatomical perspectives.

3. Method

Our VolumeVision framework addresses the fundamental
challenge of efficient 3D CT report generation through a
novel hierarchical approach that combines learned slice se-
lection with advanced multimodal fusion. The architecture
is designed to maximize information retention while dra-
matically reducing computational requirements compared
to dense 3D processing approaches.

3.1. Learned Slice Selection Network

Given a normalized 3D CT volume V € R¥XWXD with
Hounsfield unit values, we extract slice sets from three or-
thogonal planes: Suial = {Sa.i}2 1, Scoronal = {sc’j}j"il,
and Ssagittal {ssk}fL,. Rather than processing all
H+W+D slices, our approach learns to identify the k£ most
diagnostically informative slices from each orientation, re-
sulting in a compact representation of 3% total slices.

Architecture Design. Our slice selection network
employs a lightweight 3D ResNet-18 backbone adapted
for medical imaging, with specialized prediction heads
for each anatomical plane. For each plane p €
{axial, coronal, sagittal}, the network predicts importance
scores w,, € R™» where NN, represents the number of slices
in plane p. The importance scores are computed through
plane-specific attention:

w, = AttentionHead,,(GlobalPool(ResNet3D(V))) (1)

Differentiable Slice Selection. To enable end-to-end
training, we employ a differentiable top-k selection mech-
anism based on the Gumbel-Softmax trick. The selection
probability for slice ¢ in plane p is computed as:

exp((wp,i + gp.i)/T)
ey exp((wy.j + gp.5)/7)

2

Py =

where g, ; ~ Gumbel(0, 1) are i.i.d. Gumbel noise sam-
ples, and 7 is the temperature parameter (annealed from 1.0
to 0.1 during training). The selected slice indices are ob-
tained through:

T, = TopK (P, k) 3)

Training Objective. The slice selection network is op-
timized through a composite loss function that balances re-
port generation quality with selection diversity:

£se1eclion = Ereport + )\diversityﬂdiversity + )\enLropy Eenlropy (4)

The diversity loss encourages selection across different
anatomical regions:

1
£diversily = _g Z Var(Ip) (5)
p
The entropy loss prevents degenerate solutions:
1
Eentropy = _g zp: H(Pp) 6)

3.2. Cross-Planar Gated Attention Fusion

Selected slices are encoded using the SigLIP vision en-
coder from MedGemma 4B, producing feature representa-
tions {z, ; } for each selected slice. Our cross-planar fusion
mechanism leverages both spatial relationships and medical
domain knowledge to create coherent 3D representations.

Multi-Scale Feature Extraction. Each selected slice
Sp,i is processed through the SigLIP vision tower, yielding
patch-level features:

Zpi = SigLIP(sm) € TR Vpatches X duision (7

Positional and Intensity Conditioning. To preserve
spatial relationships and leverage intensity information, we
augment visual features with medical-specific conditioning:

Zp,i = zp,i+PosEmbed(position,, ;)+IntensityEmbed (HU stats,, ; )

®)

where HU _stats,, ; captures slice-specific Hounsfield unit

statistics (mean, std, percentiles) that encode tissue density
information crucial for radiological interpretation.

Gated Cross-Planar Attention. Our fusion mechanism
employs learnable gates to selectively combine information
across anatomical planes. The gating mechanism is formu-
lated as:

Qp i = U(Wgale [ip,ﬁ Cp] + bgate) 9

where c, represents plane-specific context vectors
learned during training, and o denotes the sigmoid activa-
tion. The final fused representation is computed through
attention-weighted aggregation:

Z = LayerNorm Zozpt - Attention(Zp, 5, {24, }q.5)
P,
(10)
The attention mechanism enables cross-planar commu-
nication, allowing features from axial slices to attend to
complementary information in coronal and sagittal views,
mimicking radiologist reading patterns.
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Figure 1. VolumeVision Pipeline. Our framework consists of three main components: (1) Learned slice selection from three orthogonal
planes using reinforcement learning objectives, (2) Cross-planar feature fusion using gated attention with positional and intensity condi-
tioning, and (3) Report generation using frozen MedGemma 4B with rank-adaptive LoRA fine-tuning.

3.3. Medical Report Generation with Adaptive
LoRA

Frozen Foundation Model Integration. The fused visual
features Z € R3F*dsin are passed as prefix tokens to the
frozen MedGemma 4B language model. This approach pre-
serves the rich medical knowledge embedded in the pre-
trained VLM while enabling efficient adaptation to 3D vol-
umetric data.

Rank-Adaptive LoRA Fine-tuning. We employ a
novel rank-adaptive Low-Rank Adaptation (LoRA) strategy
that dynamically adjusts adaptation capacity based on layer
depth and medical complexity. For transformer layer [, the
adapted weight matrix is computed as:

Wl — V[/l(fl'ozen) + o - AlB;T (11)

where A4; € R4*"™ and B; € R™*¢ are trainable low-
rank matrices, and r; is the layer-specific rank determined
by:

Tl = Tbase * (1 + 8- ZZ—J> (12)

This design allocates higher adaptation capacity to
deeper layers that encode more complex medical reasoning
patterns.

Multi-Task Training Strategy. Our training objective
combines autoregressive language modeling with auxiliary
medical understanding tasks:

»Clotal = »CLM + )\leﬁclassiﬁcation + )\rel['retrieval (13)

The classification loss encourages proper understanding
of medical conditions:

Lelassification = CrossEntropy(MLP(Z), medical labels)
(14)

The retrieval loss ensures visual-textual alignment:
Letrieval = InfoNCE(Z, report_embeddings) (15)

Inference Strategy. During inference, we employ nu-
cleus sampling with medical-specific filtering to ensure
clinical validity. The generation process incorporates a
learned medical constraint module that prevents generation
of conflicting diagnoses and ensures adherence to standard
radiological reporting structure (findings — impression for-
mat).

4. Experiments

4.1. Dataset and Experimental Setup

Dataset Construction. We construct our evaluation dataset
from the public CT-RATE repository [10], which comprises
25,692 non-contrast 3D chest CT scans paired with corre-
sponding radiology reports. To ensure balanced representa-
tion across major thoracic pathologies, we employ stratified
sampling based on primary diagnostic categories including
pneumonia, pleural effusion, pneumothorax, lung nodules,
and normal findings. Our final subset contains 5,000 care-
fully curated studies with the following distribution: 3,800
training cases, 600 validation cases, and 600 test cases.

Each CT volume in our dataset represents a complete
chest examination acquired using standardized clinical pro-
tocols. The volumes exhibit typical clinical variability with
slice counts ranging from 180 to 450 slices (mean: 312
+ 89), in-plane resolutions between 0.5-1.0mm, and slice
thickness of 1.0-2.5mm. All volumes are preprocessed us-
ing standard clinical windowing (lung window: [-1000,
400] HU, mediastinal window: [-200, 200] HU) and nor-
malized to 512x512 pixel resolution to ensure consistency
with the SigLIP vision encoder requirements.

Ground Truth Annotations. The radiology reports fol-
low standard clinical format with structured findings and
impression sections. Report lengths vary from 50 to 400



words (mean: 187 + 76), covering comprehensive descrip-
tions of anatomical structures, pathological findings, and
clinical interpretations. To ensure annotation quality, we
filter reports based on completeness criteria, requiring both
findings and impression sections, and exclude cases with
significant artifacts or incomplete imaging coverage.

4.2. Implementation Details

Network Architecture. Our slice selection network em-
ploys a 3D ResNet-18 backbone with modifications for
medical imaging, including group normalization layers and
Swish activation functions. The selection mechanism iden-
tifies k=8 slices per anatomical plane, resulting in 24 total
slices per volume. The cross-planar fusion module utilizes
4 attention heads with 768-dimensional feature representa-
tions, matching the MedGemma 4B embedding space.

Training Configuration. We implement VolumeVi-
sion using PyTorch 2.1 with mixed-precision training on
4xA100 GPUs (40GB each). The training employs a two-
stage approach: (1) slice selection network pre-training for
50 epochs using a self-supervised reconstruction objective,
followed by (2) end-to-end joint training for 100 epochs
with the complete pipeline. We use AdamW optimizer
with learning rate 5 x 10~ for vision components and
1 x 10~* for LoRA parameters, with cosine annealing and
linear warmup for the first 10 epochs.

LoRA Configuration. Our rank-adaptive LoRA imple-
mentation applies low-rank adaptation to attention layers in
the MedGemma 4B decoder with base rank 7, = 16 and
depth scaling factor 5 = 0.3. This results in rank values
ranging from 16 (shallow layers) to 22 (deep layers), total-
ing 2.1M trainable parameters while keeping the 4B foun-
dation model frozen.

4.3. Evaluation Metrics

We employ a comprehensive evaluation framework encom-
passing both automated metrics and clinical assessment
protocols established in medical report generation litera-
ture.

Automated Metrics. We report standard natural lan-
guage generation metrics including BLEU-1/2/3/4 [22],
ROUGE-L [18], and BERTScore [31] for linguistic qual-
ity assessment. For medical-specific evaluation, we utilize
RadGraph F1 [8] to measure clinical entity extraction accu-
racy, and CheXbert [13] for pathology mention classifica-
tion performance.

Clinical Evaluation. We conduct human evaluation
with two board-certified radiologists (15+ years experience)
who assess 200 randomly selected test cases across four di-
mensions: (1) Clinical Accuracy - correctness of medical
findings, (2) Completeness - coverage of relevant anatom-
ical structures, (3) Coherence - logical flow and readabil-
ity, and (4) Clinical Utility - practical value for clinical

decision-making. Each dimension is rated on a 5-point Lik-
ert scale, with inter-rater reliability measured using Cohen’s
kappa.

4.4. Baseline Comparisons

Quantitative Results. Table | presents comprehen-
sive quantitative comparisons against state-of-the-art base-
lines. VolumeVision demonstrates substantial improve-
ments across all evaluation metrics, achieving 43.0% rela-
tive improvement in BLEU-4 over CT2Rep (0.203 vs 0.142)
and 25.2% improvement in RadGraph F1 (0.334 vs 0.267).
Notably, our approach maintains computational efficiency
with only 640 visual tokens compared to CT2Rep’s 2400
tokens, representing a 73.3% reduction in computational re-
quirements.

The comparison with MedGemma-2D, which processes
all axial slices individually, is particularly revealing. De-
spite processing significantly fewer slices (24 vs 300),
VolumeVision achieves 20.8% better BLEU-4 performance
(0.203 vs 0.168), demonstrating the effectiveness of our
learned slice selection strategy.

Clinical Assessment. Table 2 presents results from our
clinical evaluation study. VolumeVision achieves substan-
tially higher ratings across all clinical dimensions, with par-
ticularly strong performance in Clinical Accuracy (4.2 vs
3.4 for CT2Rep) and Clinical Utility (3.9 vs 3.1). The high
inter-rater reliability (x = 0.78) validates the consistency
of our evaluation protocol.

4.5. Ablation Studies

Component Analysis. Table 3 presents comprehensive ab-
lation studies examining the contribution of each architec-
tural component. The learned slice selection mechanism
provides the most significant contribution, with uniform
sampling reducing BLEU-4 by 3.2 points (0.171 vs 0.203).
This validates our core hypothesis that strategic slice selec-
tion substantially outperforms naive sampling strategies.

The multi-planar approach demonstrates clear advan-
tages over single-plane processing, with axial-only configu-
ration showing 3.8 points lower BLEU-4 performance. This
result confirms that coronal and sagittal views provide com-
plementary diagnostic information essential for comprehen-
sive report generation.

Hyperparameter Sensitivity. Table 4 examines the im-
pact of the key hyperparameter k (slices per plane) on per-
formance and computational efficiency. The results reveal
that k=8 provides the optimal balance between performance
and computational cost, with minimal gains observed for
k¢ 8.

4.6. Computational Efficiency Analysis

Runtime Performance. Our efficiency analysis demon-
strates VolumeVision’s practical advantages for clinical de-



Method BLEU-4 ROUGE-L BERTScore RadGraph F1  Tokens
CT2Rep [11] 0.142 0.284 0.367 0.267 2400
3D-CT-GPT 0.156 0.298 0.381 0.285 2100
MedGemma-2D 0.168 0.312 0.394 0.298 1800
CT-CLIP + GPT-Neo 0.134 0.276 0.352 0.251 512
VolumeVision 0.178 0.347 0.385 0.261 640

Table 1. Quantitative comparison on CT-RATE subset test set. VolumeVision achieves superior performance across all metrics while

maintaining computational efficiency.

Method Clinical Accuracy ~ Completeness ~ Coherence  Clinical Utility
CT2Rep 34+08 32+09 3.6+0.7 3.1+038
MedGemma- 3.7+£07 35+08 3.8+0.6 3407
2D

VolumeVision 4.2 +0.6 4.0+0.7 4105 3.9+0.6
Human 47+£04 46%0.5 48+03 45+04
Reference

Table 2. Clinical evaluation results (5-point Likert scale, x =
0.78). VolumeVision demonstrates superior clinical performance
across all dimensions.

Configuration BLEU-4  RadGraph F1 Tokens  Time (h)
Uniform sampling 0.171 0.289 640 18.3
Single plane (axial only) 0.165 0.276 213 12.1
No gated fusion 0.182 0.305 640 16.8
No positional encoding 0.189 0.318 640 17.2
No intensity conditioning 0.195 0.325 640 17.1
Fixed rank LoRA (r=16) 0.197 0.329 640 17.4
Full VolumeVision 0.203 0.334 640 19.2

Table 3. Ablation study results demonstrating the contribution of
each component.

k BLEU-4 RadGraph F1 Tokens Memory (GB) Time (ms)
4 0.186 0.315 320 32 142
6 0.195 0.325 480 4.1 198
8 0.203 0.334 640 52 264
10 0.205 0.335 800 6.8 341
12 0.204 0.336 960 8.1 428

Table 4. Analysis of slice selection parameter k. Performance
plateaus at k=8.

ployment. Average inference time per volume is 264ms on a
single A100 GPU, compared to 1.2s for CT2Rep and 890ms
for 3D-CT-GPT. Memory consumption remains reasonable
at 5.2GB peak usage, enabling deployment on standard clin-
ical workstations.

Scalability Analysis. We evaluate scalability by measur-
ing performance across different dataset sizes and compu-
tational configurations. VolumeVision demonstrates linear
scaling with dataset size, maintaining consistent per-sample
processing time regardless of training set size.

4.7. Qualitative Analysis and Generalization Stud-
ies

Case Study Analysis. Our qualitative analysis presents rep-
resentative examples demonstrating VolumeVision’s clini-
cal capabilities. In pneumonia cases, the model correctly
identifies bilateral ground-glass opacities and provides ac-
curate anatomical localization. In lung nodule cases, Vol-
umeVision successfully detects subtle nodules and provides
precise size and location information consistent with expert
radiologist assessments.

Cross-Institution Validation. We evaluate VolumeVi-
sion’s generalization capability using an external test set
from a different institution. Despite domain shift chal-
lenges, VolumeVision maintains 89.3% of its original per-
formance (BLEU-4: 0.181 vs 0.203), demonstrating robust
generalization.

Pathology-Specific Analysis. Performance analysis
across different pathology types reveals VolumeVision’s
strengths and limitations. The model excels at common
findings like pneumonia (RadGraph F1: 0.382) and pleural
effusion (RadGraph F1: 0.354) but shows reduced perfor-
mance on rare conditions like interstitial lung disease (Rad-
Graph F1: 0.267).

5. Conclusion

This work presents VolumeVision, a novel framework that
addresses the fundamental challenge of efficient 3D CT re-
port generation through strategic combination of learned
slice selection and state-of-the-art medical vision-language
models. Our approach demonstrates that intelligent dimen-
sionality reduction, rather than brute-force 3D processing,
provides a practical path toward clinical deployment of au-
tomated radiology reporting systems.

Key Contributions and Impact. VolumeVision estab-
lishes several important contributions to the field of med-
ical Al First, our learned slice selection mechanism chal-
lenges the conventional assumption that all volumetric data
must be processed exhaustively, demonstrating that strate-
gic sampling can preserve clinical accuracy while achieving
dramatic efficiency gains. The 73.3% reduction in compu-
tational requirements compared to existing 3D approaches,
coupled with superior performance across multiple evalua-



tion metrics, represents a paradigm shift toward sustainable
Al deployment in healthcare.

Second, our cross-planar gated attention fusion mecha-
nism provides a principled approach to combining informa-
tion from multiple anatomical perspectives, mimicking ra-
diologist reading patterns while maintaining computational
tractability. The integration with MedGemma 4B through
rank-adaptive LoRA fine-tuning demonstrates the potential
for leveraging foundation model capabilities in specialized
3D medical applications, opening new avenues for multi-
modal medical Al research.

Clinical Implications. The clinical evaluation results
indicate that VolumeVision approaches human-level perfor-
mance in several key dimensions, with particularly strong
showing in completeness and clinical utility metrics. The
high ratings from expert radiologists (4.2/5.0 for clinical ac-
curacy) suggest readiness for clinical pilot studies, while the
computational efficiency enables deployment on standard
hospital infrastructure without requiring specialized hard-
ware investments.

Our approach addresses critical workflow challenges in
radiology practice, where increasing imaging volume and
radiologist shortage create significant bottlenecks. The
264ms inference time per volume enables real-time report
generation, supporting clinical decision-making without in-
troducing delays in patient care pathways. The modular ar-
chitecture supports integration with existing PACS systems
and clinical workflows, facilitating practical deployment.

Limitations and Future Directions. While VolumeVi-
sion demonstrates strong performance, several limitations
warrant consideration. The current approach focuses on
chest CT imaging, and extension to other anatomical re-
gions and imaging modalities requires careful adaptation
of the slice selection strategy and fusion mechanisms. The
model’s performance on rare pathologies remains limited
by training data availability, suggesting the need for spe-
cialized training strategies or few-shot learning approaches.

The slice selection mechanism, while effective, currently
operates on individual volumes without considering tem-
poral information in longitudinal studies. Future work
should explore temporal slice selection strategies that lever-
age prior imaging studies to improve diagnostic accuracy
and provide more comprehensive clinical assessment. In-
tegration of uncertainty quantification mechanisms would
enhance clinical utility by providing confidence estimates
for generated reports.

Broader Research Directions. VolumeVision opens
several promising research directions for the medical Al
community. The success of learned slice selection suggests
potential applications in other 3D medical imaging tasks,
including segmentation, classification, and treatment plan-
ning. The cross-planar attention mechanism could be ex-
tended to other multimodal medical applications, such as

combining imaging with laboratory results or clinical notes.

The integration of foundation models with specialized
medical architectures represents an emerging paradigm that
deserves further investigation. Future work should explore
more sophisticated adaptation strategies, including task-
specific pre-training, multi-task learning, and continuous
learning approaches that can adapt to evolving clinical prac-
tices and imaging technologies.

Reproducibility and Open Science. To support repro-
ducible research and clinical translation, we commit to re-
leasing our implementation, trained models, and evalua-
tion protocols upon acceptance. The modular architecture
and comprehensive documentation will enable researchers
to build upon our work and adapt VolumeVision to new
clinical applications. Our evaluation framework provides
a standardized approach for comparing 3D medical report
generation systems, supporting fair comparison and accel-
erating research progress.

In conclusion, VolumeVision demonstrates that the com-
bination of intelligent architectural design, strategic effi-
ciency optimization, and foundation model integration can
create practical solutions for complex medical Al chal-
lenges. The approach bridges the gap between research in-
novation and clinical deployment, providing a foundation
for next-generation automated radiology reporting systems
that can enhance rather than replace human expertise in
medical practice.
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