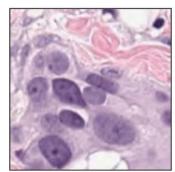
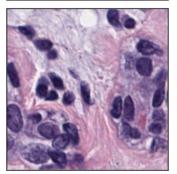


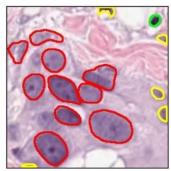
Two Heads Are Enough: Dual U-Net – Design & Analysis of a Fast and Efficient Cell Classification & Segmentation Algorithm

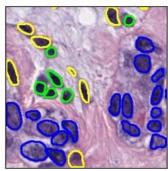
Muhammad Abdul Rafey Farooqi 369797

Problem & Motivation


Goal: Efficient nuclei segmentation in high-res histopathology


Challenges:


- 1. Large image sizes \rightarrow high computational cost.
- Existing models (e.g., HoVer-Net) use 3 decoders → heavy compute & memory.


Algorithmic framing:

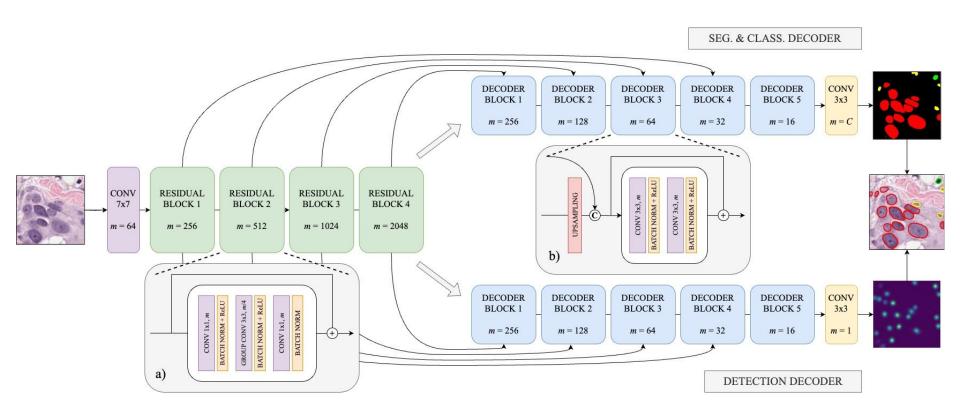
- Input: Large pixel grids (often 1000×1000+ patches).
- Output: Two maps segmentation & centroid detection.

Architecture Overview

Key Change

Dual heads instead of triple decoder (HoVer-Net).

Segmentation Head


Outputs per-pixel class labels.

Detection Head

Outputs centroid heatmap.

Architecture Overview

Algorithmic Effect

Reduced Cost

Reduces $O(f \times p)$ style cost from extra decoder passes (f = feature maps, p = pixels).

Simpler Fusion

Less feature fusion complexity.

Data Flow & Algorithm Steps

Algorithm 1 DualU-Net Data Flow and Complexity Model

- 1: **Input:** Image patch of N pixels
- 2: Output: Segmentation map, centroid heatmap
- 3: Step 1: Encoder

Extract multi-scale features using U-Net backbone.

Complexity per layer:

$$O(N \times k^2 \times c_{\rm in} \times c_{\rm out})$$

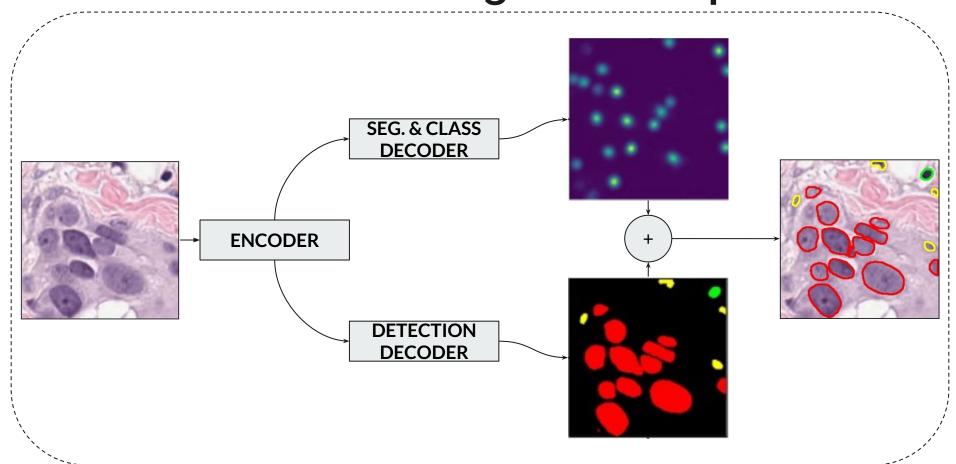
4: Step 2: Decoder Stage

Feed features into d parallel decoders.

Complexity:

$$O(L \times N \times k^2 \times C \times d)$$

where L = layers per decoder, C = channels term.


5: Step 3: Output Combination

Merge segmentation and centroid heatmap to obtain instance-level segmentation.

6: **Note:** For DualU-Net, d = 2; for HoVer-Net, d = 3.

Thus, DualU-Net has $\frac{2}{3}$ of the decoder-side computation.

Data Flow & Algorithm Steps

Time Complexity Analysis

Let:

$$N = \text{number of pixels in input patch (e.g., } W \times H)$$
 (1)

$$d =$$
number of decoder branches (2)

$$L =$$
 number of convolutional layers per decoder (3)

Derivation:

Per-conv cost:
$$O(N \times k^2 \times C)$$
 (4)

Total decoder cost:
$$O(L \times N \times k^2 \times C \times d)$$
 (5)

Comparison:

Model	d	Complexity	Relative Cost
HoVer-Net	3	$O(L \times N \times k^2 \times C \times 3)$	100%
DualU-Net	2	$O(L \times N \times k^2 \times C \times 2)$	67%

Space Complexity Analysis

Activation memory: $O(N \times C \times d)$ at decoder output.

Weight storage: Linear in $d \times L \times k^2 \times C$.

Fewer decoders = fewer parameters & less intermediate feature storage.

This leads to **lower GPU VRAM** usage \rightarrow allows larger batch sizes.

Empirical Runtime

Paper reports approx. 5× faster inference than HoVer-Net in practice.

Reason:

- Fewer convolution ops in decoder phase.
- Less memory transfer overhead.

Algorithmic takeaway: Real-world performance improvement matches predicted asymptotic reduction.

Model	Nº Parameters (M)	GLOPs ↓		$\textbf{Latency (ms)} \downarrow$	
	1000 00	256	1024	256	1024
$CellViT_{256}$	46.75	132.89	2125.94	35.71 ± 0.37	1169.7 ± 148.92
NuLite-S	34.10	23.15	370.25	29.99 ± 1.79	310.44 ± 24.64
NuLite-M	47.93	32.54	520.45	33.37 ± 1.34	446.3 ± 35.25
Ours	41.01	16.26	260.23	12.05 ± 0.41	141.88 ± 0.69
Ours ConvNeXt	97.81	26.78	428.49	20.82 ± 0.17	264.19 ± 1.48

Conclusion

- Algorithm design choices (like number of heads) directly affect complexity.
- DualU-Net → O(2 × decoder cost) vs HoVer-Net's O(3 × decoder cost).
- Efficiency gains validated in real deployment (8 hospitals).
- **Takeaway:** Smart architectural simplification beats brute force.